File size: 9,198 Bytes
3bbb319 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# Tutorial 2: Adding New Dataset
## Customize datasets by reorganizing data to COCO format
The simplest way to use the custom dataset is to convert your annotation format to COCO dataset format.
The annotation json files in COCO format has the following necessary keys:
```python
'images': [
{
'file_name': '000000001268.jpg',
'height': 427,
'width': 640,
'id': 1268
},
...
],
'annotations': [
{
'segmentation': [[426.36,
...
424.34,
223.3]],
'keypoints': [0,0,0,
0,0,0,
0,0,0,
427,220,2,
443,222,2,
414,228,2,
449,232,2,
408,248,1,
454,261,2,
0,0,0,
0,0,0,
411,287,2,
431,287,2,
0,0,0,
458,265,2,
0,0,0,
466,300,1],
'num_keypoints': 10,
'area': 3894.5826,
'iscrowd': 0,
'image_id': 1268,
'bbox': [402.34, 205.02, 65.26, 88.45],
'category_id': 1,
'id': 215218
},
...
],
'categories': [
{'id': 1, 'name': 'person'},
]
```
There are three necessary keys in the json file:
- `images`: contains a list of images with their information like `file_name`, `height`, `width`, and `id`.
- `annotations`: contains the list of instance annotations.
- `categories`: contains the category name ('person') and its ID (1).
## Create a custom dataset_info config file for the dataset
Add a new dataset info config file.
```
configs/_base_/datasets/custom.py
```
An example of the dataset config is as follows.
`keypoint_info` contains the information about each keypoint.
1. `name`: the keypoint name. The keypoint name must be unique.
2. `id`: the keypoint id.
3. `color`: (\[B, G, R\]) is used for keypoint visualization.
4. `type`: 'upper' or 'lower', will be used in data augmetation.
5. `swap`: indicates the 'swap pair' (also known as 'flip pair'). When applying image horizontal flip, the left part will become the right part. We need to flip the keypoints accordingly.
`skeleton_info` contains the information about the keypoint connectivity, which is used for visualization.
`joint_weights` assigns different loss weights to different keypoints.
`sigmas` is used to calculate the OKS score. Please read [keypoints-eval](https://cocodataset.org/#keypoints-eval) to learn more about it.
```
dataset_info = dict(
dataset_name='coco',
paper_info=dict(
author='Lin, Tsung-Yi and Maire, Michael and '
'Belongie, Serge and Hays, James and '
'Perona, Pietro and Ramanan, Deva and '
r'Doll{\'a}r, Piotr and Zitnick, C Lawrence',
title='Microsoft coco: Common objects in context',
container='European conference on computer vision',
year='2014',
homepage='http://cocodataset.org/',
),
keypoint_info={
0:
dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''),
1:
dict(
name='left_eye',
id=1,
color=[51, 153, 255],
type='upper',
swap='right_eye'),
2:
dict(
name='right_eye',
id=2,
color=[51, 153, 255],
type='upper',
swap='left_eye'),
3:
dict(
name='left_ear',
id=3,
color=[51, 153, 255],
type='upper',
swap='right_ear'),
4:
dict(
name='right_ear',
id=4,
color=[51, 153, 255],
type='upper',
swap='left_ear'),
5:
dict(
name='left_shoulder',
id=5,
color=[0, 255, 0],
type='upper',
swap='right_shoulder'),
6:
dict(
name='right_shoulder',
id=6,
color=[255, 128, 0],
type='upper',
swap='left_shoulder'),
7:
dict(
name='left_elbow',
id=7,
color=[0, 255, 0],
type='upper',
swap='right_elbow'),
8:
dict(
name='right_elbow',
id=8,
color=[255, 128, 0],
type='upper',
swap='left_elbow'),
9:
dict(
name='left_wrist',
id=9,
color=[0, 255, 0],
type='upper',
swap='right_wrist'),
10:
dict(
name='right_wrist',
id=10,
color=[255, 128, 0],
type='upper',
swap='left_wrist'),
11:
dict(
name='left_hip',
id=11,
color=[0, 255, 0],
type='lower',
swap='right_hip'),
12:
dict(
name='right_hip',
id=12,
color=[255, 128, 0],
type='lower',
swap='left_hip'),
13:
dict(
name='left_knee',
id=13,
color=[0, 255, 0],
type='lower',
swap='right_knee'),
14:
dict(
name='right_knee',
id=14,
color=[255, 128, 0],
type='lower',
swap='left_knee'),
15:
dict(
name='left_ankle',
id=15,
color=[0, 255, 0],
type='lower',
swap='right_ankle'),
16:
dict(
name='right_ankle',
id=16,
color=[255, 128, 0],
type='lower',
swap='left_ankle')
},
skeleton_info={
0:
dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
1:
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
2:
dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]),
3:
dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]),
4:
dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]),
5:
dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]),
6:
dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]),
7:
dict(
link=('left_shoulder', 'right_shoulder'),
id=7,
color=[51, 153, 255]),
8:
dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]),
9:
dict(
link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]),
10:
dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]),
11:
dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]),
12:
dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]),
13:
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
14:
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
15:
dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]),
16:
dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]),
17:
dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]),
18:
dict(
link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255])
},
joint_weights=[
1., 1., 1., 1., 1., 1., 1., 1.2, 1.2, 1.5, 1.5, 1., 1., 1.2, 1.2, 1.5,
1.5
],
sigmas=[
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062,
0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089
])
```
## Create a custom dataset class
1. First create a package inside the mmpose/datasets/datasets folder.
2. Create a class definition of your dataset in the package folder and register it in the registry with a name. Without a name, it will keep giving the error. `KeyError: 'XXXXX is not in the dataset registry'`
```
@DATASETS.register_module(name='MyCustomDataset')
class MyCustomDataset(SomeOtherBaseClassAsPerYourNeed):
```
3. Make sure you have updated the `__init__.py` of your package folder
4. Make sure you have updated the `__init__.py` of the dataset package folder.
## Create a custom training config file
Create a custom training config file as per your need and the model/architecture you want to use in the configs folder. You may modify an existing config file to use the new custom dataset.
In `configs/my_custom_config.py`:
```python
...
# dataset settings
dataset_type = 'MyCustomDataset'
...
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file='path/to/your/train/json',
img_prefix='path/to/your/train/img',
...),
val=dict(
type=dataset_type,
ann_file='path/to/your/val/json',
img_prefix='path/to/your/val/img',
...),
test=dict(
type=dataset_type,
ann_file='path/to/your/test/json',
img_prefix='path/to/your/test/img',
...))
...
```
Make sure you have provided all the paths correctly.
|