File size: 6,450 Bytes
3bbb319 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
import mmcv
import numpy as np
import pytest
import torch
from mmpose.apis import (extract_pose_sequence, inference_interhand_3d_model,
inference_mesh_model, inference_pose_lifter_model,
init_pose_model, vis_3d_mesh_result,
vis_3d_pose_result)
from mmpose.datasets.dataset_info import DatasetInfo
from tests.utils.mesh_utils import generate_smpl_weight_file
def test_pose_lifter_demo():
# H36M demo
pose_model = init_pose_model(
'configs/body/3d_kpt_sview_rgb_img/pose_lift/'
'h36m/simplebaseline3d_h36m.py',
None,
device='cpu')
pose_det_result = {
'keypoints': np.zeros((17, 3)),
'bbox': [50, 50, 50, 50],
'track_id': 0,
'image_name': 'tests/data/h36m/S1_Directions_1.54138969_000001.jpg',
}
pose_results_2d = [[pose_det_result]]
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
pose_results_2d = extract_pose_sequence(
pose_results_2d, frame_idx=0, causal=False, seq_len=1, step=1)
_ = inference_pose_lifter_model(
pose_model,
pose_results_2d,
dataset_info=dataset_info,
with_track_id=False)
pose_lift_results = inference_pose_lifter_model(
pose_model,
pose_results_2d,
dataset_info=dataset_info,
with_track_id=True)
for res in pose_lift_results:
res['title'] = 'title'
vis_3d_pose_result(
pose_model,
pose_lift_results,
img=pose_results_2d[0][0]['image_name'],
dataset_info=dataset_info)
# test special cases
# Empty 2D results
_ = inference_pose_lifter_model(
pose_model, [[]], dataset_info=dataset_info, with_track_id=False)
if torch.cuda.is_available():
_ = inference_pose_lifter_model(
pose_model.cuda(),
pose_results_2d,
dataset_info=dataset_info,
with_track_id=False)
# test videopose3d
pose_model = init_pose_model(
'configs/body/3d_kpt_sview_rgb_vid/video_pose_lift/h36m/'
'videopose3d_h36m_243frames_fullconv_supervised_cpn_ft.py',
None,
device='cpu')
pose_det_result_0 = {
'keypoints': np.ones((17, 3)),
'bbox': [50, 50, 100, 100],
'track_id': 0,
'image_name': 'tests/data/h36m/S1_Directions_1.54138969_000001.jpg',
}
pose_det_result_1 = {
'keypoints': np.ones((17, 3)),
'bbox': [50, 50, 100, 100],
'track_id': 1,
'image_name': 'tests/data/h36m/S5_SittingDown.54138969_002061.jpg',
}
pose_det_result_2 = {
'keypoints': np.ones((17, 3)),
'bbox': [50, 50, 100, 100],
'track_id': 2,
'image_name': 'tests/data/h36m/S7_Greeting.55011271_000396.jpg',
}
pose_results_2d = [[pose_det_result_0], [pose_det_result_1],
[pose_det_result_2]]
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
seq_len = pose_model.cfg.test_data_cfg.seq_len
pose_results_2d_seq = extract_pose_sequence(
pose_results_2d, 1, causal=False, seq_len=seq_len, step=1)
pose_lift_results = inference_pose_lifter_model(
pose_model,
pose_results_2d_seq,
dataset_info=dataset_info,
with_track_id=True,
image_size=[1000, 1000],
norm_pose_2d=True)
for res in pose_lift_results:
res['title'] = 'title'
vis_3d_pose_result(
pose_model,
pose_lift_results,
img=pose_results_2d[0][0]['image_name'],
dataset_info=dataset_info,
)
def test_interhand3d_demo():
# H36M demo
pose_model = init_pose_model(
'configs/hand/3d_kpt_sview_rgb_img/internet/interhand3d/'
'res50_interhand3d_all_256x256.py',
None,
device='cpu')
image_name = 'tests/data/interhand2.6m/image2017.jpg'
det_result = {
'image_name': image_name,
'bbox': [50, 50, 50, 50], # bbox format is 'xywh'
'camera_param': None,
'keypoints_3d_gt': None
}
det_results = [det_result]
dataset = pose_model.cfg.data['test']['type']
dataset_info = DatasetInfo(pose_model.cfg.data['test']['dataset_info'])
pose_results = inference_interhand_3d_model(
pose_model, image_name, det_results, dataset=dataset)
for res in pose_results:
res['title'] = 'title'
vis_3d_pose_result(
pose_model,
result=pose_results,
img=det_results[0]['image_name'],
dataset_info=dataset_info,
)
# test special cases
# Empty det results
_ = inference_interhand_3d_model(
pose_model, image_name, [], dataset=dataset)
if torch.cuda.is_available():
_ = inference_interhand_3d_model(
pose_model.cuda(), image_name, det_results, dataset=dataset)
with pytest.raises(NotImplementedError):
_ = inference_interhand_3d_model(
pose_model, image_name, det_results, dataset='test')
def test_body_mesh_demo():
# H36M demo
config = 'configs/body/3d_mesh_sview_rgb_img/hmr' \
'/mixed/res50_mixed_224x224.py'
config = mmcv.Config.fromfile(config)
config.model.mesh_head.smpl_mean_params = \
'tests/data/smpl/smpl_mean_params.npz'
pose_model = None
with tempfile.TemporaryDirectory() as tmpdir:
config.model.smpl.smpl_path = tmpdir
config.model.smpl.joints_regressor = osp.join(
tmpdir, 'test_joint_regressor.npy')
# generate weight file for SMPL model.
generate_smpl_weight_file(tmpdir)
pose_model = init_pose_model(config, device='cpu')
assert pose_model is not None, 'Fail to build pose model'
image_name = 'tests/data/h36m/S1_Directions_1.54138969_000001.jpg'
det_result = {
'keypoints': np.zeros((17, 3)),
'bbox': [50, 50, 50, 50],
'image_name': image_name,
}
# make person bounding boxes
person_results = [det_result]
dataset = pose_model.cfg.data['test']['type']
# test a single image, with a list of bboxes
pose_results = inference_mesh_model(
pose_model,
image_name,
person_results,
bbox_thr=None,
format='xywh',
dataset=dataset)
vis_3d_mesh_result(pose_model, pose_results, image_name)
|