File size: 4,658 Bytes
3bbb319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright (c) OpenMMLab. All rights reserved.
import tempfile

import torch
from mmcv import Config

from mmpose.datasets import DATASETS, build_dataloader
from mmpose.datasets.dataset_info import DatasetInfo
from mmpose.models import builder


def test_voxelpose_forward():
    dataset = 'Body3DMviewDirectPanopticDataset'
    dataset_class = DATASETS.get(dataset)
    dataset_info = Config.fromfile(
        'configs/_base_/datasets/panoptic_body3d.py').dataset_info
    space_size = [8000, 8000, 2000]
    space_center = [0, -500, 800]
    cube_size = [20, 20, 8]
    data_cfg = dict(
        image_size=[960, 512],
        heatmap_size=[[240, 128]],
        space_size=space_size,
        space_center=space_center,
        cube_size=cube_size,
        num_joints=15,
        seq_list=['160906_band1'],
        cam_list=[(0, 12), (0, 6)],
        num_cameras=2,
        seq_frame_interval=1,
        subset='train',
        need_2d_label=True,
        need_camera_param=True,
        root_id=2)

    pipeline_heatmap = [
        dict(
            type='MultiItemProcess',
            pipeline=[
                dict(
                    type='BottomUpGenerateTarget', sigma=3, max_num_people=20)
            ]),
        dict(
            type='DiscardDuplicatedItems',
            keys_list=[
                'joints_3d', 'joints_3d_visible', 'ann_info', 'roots_3d',
                'num_persons', 'sample_id'
            ]),
        dict(
            type='GenerateVoxel3DHeatmapTarget',
            sigma=200.0,
            joint_indices=[2]),
        dict(type='RenameKeys', key_pairs=[('targets', 'input_heatmaps')]),
        dict(
            type='Collect',
            keys=['targets_3d', 'input_heatmaps'],
            meta_keys=[
                'camera', 'center', 'scale', 'joints_3d', 'num_persons',
                'joints_3d_visible', 'roots_3d', 'sample_id'
            ]),
    ]

    model_cfg = dict(
        type='DetectAndRegress',
        backbone=None,
        human_detector=dict(
            type='VoxelCenterDetector',
            image_size=[960, 512],
            heatmap_size=[240, 128],
            space_size=space_size,
            cube_size=cube_size,
            space_center=space_center,
            center_net=dict(
                type='V2VNet', input_channels=15, output_channels=1),
            center_head=dict(
                type='CuboidCenterHead',
                space_size=space_size,
                space_center=space_center,
                cube_size=cube_size,
                max_num=3,
                max_pool_kernel=3),
            train_cfg=dict(dist_threshold=500000000.0),
            test_cfg=dict(center_threshold=0.0),
        ),
        pose_regressor=dict(
            type='VoxelSinglePose',
            image_size=[960, 512],
            heatmap_size=[240, 128],
            sub_space_size=[2000, 2000, 2000],
            sub_cube_size=[20, 20, 8],
            num_joints=15,
            pose_net=dict(
                type='V2VNet', input_channels=15, output_channels=15),
            pose_head=dict(type='CuboidPoseHead', beta=100.0),
            train_cfg=None,
            test_cfg=None))

    model = builder.build_posenet(model_cfg)
    with tempfile.TemporaryDirectory() as tmpdir:
        dataset = dataset_class(
            ann_file=tmpdir + '/tmp_train.pkl',
            img_prefix='tests/data/panoptic_body3d/',
            data_cfg=data_cfg,
            pipeline=pipeline_heatmap,
            dataset_info=dataset_info,
            test_mode=False)

    data_loader = build_dataloader(
        dataset,
        seed=None,
        dist=False,
        shuffle=False,
        drop_last=False,
        workers_per_gpu=1,
        samples_per_gpu=1)

    with torch.no_grad():
        for data in data_loader:
            # test forward_train
            _ = model(
                img=None,
                img_metas=data['img_metas'].data[0],
                return_loss=True,
                targets_3d=data['targets_3d'],
                input_heatmaps=data['input_heatmaps'])

            # test forward_test
            _ = model(
                img=None,
                img_metas=data['img_metas'].data[0],
                return_loss=False,
                input_heatmaps=data['input_heatmaps'])

            with tempfile.TemporaryDirectory() as tmpdir:
                model.show_result(
                    img=None,
                    img_metas=data['img_metas'].data[0],
                    input_heatmaps=data['input_heatmaps'],
                    dataset_info=DatasetInfo(dataset_info),
                    out_dir=tmpdir,
                    visualize_2d=True)