File size: 9,651 Bytes
3bbb319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
// ------------------------- OpenPose Resize Layer Testing -------------------------

// Third-party dependencies
#include <opencv2/opencv.hpp>
// Command-line user interface
#define OPENPOSE_FLAGS_DISABLE_POSE
#include <openpose/flags.hpp>
// OpenPose dependencies
#include <openpose/headers.hpp>
// Caffe dependencies
#ifdef USE_CAFFE
    #include <caffe/blob.hpp>
#endif
// OpenCL dependencies
#ifdef USE_OPENCL
#include <openpose_private/gpu/opencl.hcl>
#include <openpose_private/gpu/cl2.hpp>

DEFINE_string(image_path,               "examples/media/COCO_val2014_000000000192.jpg",     "Process the desired image.");

//    cv::Mat gpuResize(cv::Mat& img, const cv::Size& newSize)
//    {
//        #ifdef USE_CUDA
//            // Upload to Source to GPU
//            float* cpuPtr = &img.at<float>(0);
//            float* gpuPtr;
//            cudaMallocHost((void **)&gpuPtr, img.size().width * img.size().height * sizeof(float));
//            cudaMemcpy(gpuPtr, cpuPtr, img.size().width * img.size().height * sizeof(float),
//                       cudaMemcpyHostToDevice);

//            // Upload to Dest to GPU
//            cv::Mat newImg = cv::Mat(newSize,CV_32FC1,cv::Scalar(0));
//            float* newCpuPtr = &newImg.at<float>(0);
//            float* newGpuPtr;
//            cudaMallocHost((void **)&newGpuPtr, newSize.width * newSize.height * sizeof(float));
//            cudaMemcpy(newGpuPtr, newCpuPtr, newSize.width * newSize.height * sizeof(float),
//                       cudaMemcpyHostToDevice);

//            std::vector<const float*> sourcePtrs;
//            sourcePtrs.emplace_back(gpuPtr);
//            std::array<int, 4> targetSize = {1,1,newImg.size().height,newImg.size().width};
//            std::array<int, 4> sourceSize = {1,1,img.size().height,img.size().width};
//            std::vector<std::array<int, 4>> sourceSizes;
//            sourceSizes.emplace_back(sourceSize);
//            op::resizeAndMergeGpu(newGpuPtr, sourcePtrs, targetSize, sourceSizes);
//            cudaMemcpy(newCpuPtr, newGpuPtr, newImg.size().width * newImg.size().height * sizeof(float),
//                       cudaMemcpyDeviceToHost);

//            cudaFree(gpuPtr);
//            cudaFree(newGpuPtr);
//            return newImg;
//        #else
//            UNUSED(img);
//            UNUSED(newSize);
//            op::error("OpenPose must be compiled with the `USE_CAFFE` & `USE_CUDA` macro definitions in order to run"
//                  " this functionality.", __LINE__, __FUNCTION__, __FILE__);
//        #endif
//    }

//    cv::Mat cpuResize(cv::Mat& img, cv::Size newSize)
//    {
//        // Upload to Source to GPU
//        float* cpuPtr = &img.at<float>(0);

//        // Upload to Dest to GPU
//        cv::Mat newImg = cv::Mat(newSize,CV_32FC1,cv::Scalar(0));

//        std::vector<const float*> sourcePtrs;
//        sourcePtrs.emplace_back(cpuPtr);
//        std::array<int, 4> targetSize = {1,1,newImg.size().height,newImg.size().width};
//        std::array<int, 4> sourceSize = {1,1,img.size().height,img.size().width};
//        std::vector<std::array<int, 4>> sourceSizes;
//        sourceSizes.emplace_back(sourceSize);
//        op::resizeAndMergeCpu(&newImg.at<float>(0), sourcePtrs, targetSize, sourceSizes);

//        return newImg;
//    }

typedef cl::KernelFunctor<cl::Buffer, int, int, float> ScaleFunctor;
const std::string scaleKernelString = MULTI_LINE_STRING(
            __kernel void scaleKernel(__global float* targetPtr, const int targetWidth, const int targetHeight,
                                      const float scale)
{
                int x = get_global_id(0);
                int y = get_global_id(1);
                int c = get_global_id(2);

                __global float* targetPtrC = &targetPtr[c*targetWidth*targetHeight];
                targetPtrC[y*targetWidth+x] *= scale;
            }
            );

int clTest()
{
    try
    {
        // logging_level
        cv::Mat img = cv::imread(FLAGS_image_path);
        if(img.empty())
            op::error("Could not open or find the image: " + FLAGS_image_path, __LINE__, __FUNCTION__, __FILE__);
        cv::Mat imgResize; cv::resize(img, imgResize, cv::Size(368,368));
        cv::Mat imgFloat; imgResize.convertTo(imgFloat, CV_32FC3);
        imgFloat /= 255.;
        int imageVolume = imgFloat.size().width * imgFloat.size().height * imgFloat.channels();
        std::cout << imgFloat.channels() << std::endl;

        // Setup caffe
        caffe::Caffe::set_mode(caffe::Caffe::GPU);
        std::vector<int> devices;
        const int maxNumberGpu = op::OpenCL::getTotalGPU();
        for (auto i = 0; i < maxNumberGpu; i++){
            devices.emplace_back(i);
            std::cout << i << std::endl;
        }
        caffe::Caffe::SetDevices(devices);

        // Load model
        std::unique_ptr<caffe::Net<float>> upCaffeNet;
        caffe::Caffe::set_mode(caffe::Caffe::GPU);
        caffe::Caffe::SelectDevice(0, true);
        upCaffeNet.reset(new caffe::Net<float>{
            "models/pose/coco/pose_deploy_linevec.prototxt", caffe::TEST, caffe::Caffe::GetDefaultDevice()});
        upCaffeNet->CopyTrainedLayersFrom("models/pose/coco/pose_iter_440000.caffemodel");
        op::OpenCL::getInstance(0, CL_DEVICE_TYPE_GPU, true);

        // Reshape net to image size
        upCaffeNet->blobs()[0]->Reshape({1,imgFloat.channels(),imgResize.size().width,imgResize.size().height});
        upCaffeNet->Reshape();

        // Convert to caffe image
        caffe::BlobProto blob_proto;
        blob_proto.set_channels(3);
        blob_proto.set_height(imgResize.size().width);
        blob_proto.set_width(imgResize.size().height);
        blob_proto.clear_data();
        for (int c = 0; c < 3; ++c)
            for (int h = 0; h < imgResize.size().height; ++h)
                for (int w = 0; w < imgResize.size().width; ++w)
                    blob_proto.add_data(imgResize.at<cv::Vec3f>(h, w)[c]);
        blob_proto.set_num(1);
        caffe::Blob<float>* input_layer = upCaffeNet->input_blobs()[0];
        input_layer->FromProto(blob_proto);
        upCaffeNet->Forward(0);

        boost::shared_ptr<caffe::Blob<float>> output_blob = upCaffeNet->blob_by_name("net_output");

        // Test
        cl::Device& device = op::OpenCL::getInstance(0)->getDevice();
        cl_uint mem_align;
        clGetDeviceInfo(device.get(), CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(mem_align), &mem_align, nullptr);
        std::cout << "Alignment in bits of the base address : " << mem_align << std::endl;

        // GPU Test
        cv::Mat finalImage = imgFloat;
        try{

            // Get
            float* gpuPtr = output_blob->mutable_gpu_data();
            cl::Buffer outputBuffer((cl_mem)gpuPtr, true);

            // Read it
            // Read back image to GPU
            float* heatmaps = new float[output_blob->shape()[1] * output_blob->shape()[2] * output_blob->shape()[3]];
            op::OpenCL::getInstance(0)->getQueue().enqueueReadBuffer(
                outputBuffer, CL_TRUE, 0,
                output_blob->shape()[1] * output_blob->shape()[2] * output_blob->shape()[3] * sizeof(float), heatmaps);

            int heatmapChannels = output_blob->shape()[1];
            int shape = output_blob->shape()[2] * output_blob->shape()[3];
            for(int i=0; i<heatmapChannels; i++){
                cv::Mat hm(cv::Size(output_blob->shape()[2], output_blob->shape()[3]), CV_32FC1);
                // Read subbuffer
                cl_buffer_region sourceRegion;
                op::OpenCL::getBufferRegion<float>(sourceRegion, i * shape, shape);
                cl::Buffer regionBuffer = outputBuffer.createSubBuffer(CL_MEM_READ_WRITE,
                                                                      CL_BUFFER_CREATE_TYPE_REGION,
                                                                      &sourceRegion);
            }
        }
        #if defined(USE_OPENCL) && defined(CL_HPP_ENABLE_EXCEPTIONS)
            catch (const cl::Error& e)
            {
                op::error(std::string(e.what()) + " : " + op::OpenCL::clErrorToString(e.err()) + " ID: " +
                          std::to_string(0), __LINE__, __FUNCTION__, __FILE__);
            }
        #endif
        catch (const std::exception& e)
        {
            op::error(e.what(), __LINE__, __FUNCTION__, __FILE__);
        }

        cv::imshow("win", finalImage);
        cv::waitKey(0);

        // Load model

        //            img.convertTo(img, CV_32FC1);
        //            img = cpuResize(img, cv::Size(img.size().width/4,img.size().height/4));
        //            img*=0.005;

        //            cv::Mat gpuImg = gpuResize(img, cv::Size(img.size().width*8,img.size().height*8));
        //            cv::Mat cpuImg = cpuResize(img, cv::Size(img.size().width*8,img.size().height*8));
        //            cv::imshow("gpuImg", gpuImg);
        //            cv::imshow("cpuImg", cpuImg);

        //            op::opLog("Done");
        //            cv::waitKey(0);

        return 0;
    }
    catch (const std::exception& e)
    {
        op::error(e.what(), __LINE__, __FUNCTION__, __FILE__);
        return -1;
    }
}
#endif

int main()
{
#ifdef USE_OPENCL
    // Parsing command line flags
    gflags::ParseCommandLineFlags(&argc, &argv, true);

    // Running handFromJsonTest
    std::thread t(&clTest);
    t.join();
    return 0;
#else
    op::error("OpenPose must be compiled with the `USE_CAFFE` & `USE_OPENCL` macro definitions in order to run"
              " this functionality.", __LINE__, __FUNCTION__, __FILE__);
    return -1;
#endif
}