show / mmpose-0.29.0 /tests /test_apis /test_inference.py
camenduru's picture
thanks to show ❤
3bbb319
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path as osp
from glob import glob
import json_tricks as json
import mmcv
import numpy as np
from mmpose.apis import (collect_multi_frames, inference_bottom_up_pose_model,
inference_gesture_model,
inference_top_down_pose_model, init_pose_model,
process_mmdet_results, vis_pose_result)
from mmpose.datasets import DatasetInfo
def test_top_down_demo():
# COCO demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/'
'coco/res50_coco_256x192.py',
None,
device='cpu')
image_name = 'tests/data/coco/000000000785.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
person_result = []
person_result.append({'bbox': [50, 50, 50, 100]})
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# MPII demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/body/2d_kpt_sview_rgb_img/deeppose/'
'mpii/res50_mpii_256x256.py',
None,
device='cpu')
image_name = 'tests/data/mpii/004645041.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
person_result = []
person_result.append({'bbox': [50, 50, 50, 100]})
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# AIC demo
pose_model = init_pose_model(
'configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/'
'aic/res50_aic_256x192.py',
None,
device='cpu')
image_name = 'tests/data/aic/054d9ce9201beffc76e5ff2169d2af2f027002ca.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# OneHand10K demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/hand/2d_kpt_sview_rgb_img/topdown_heatmap/'
'onehand10k/res50_onehand10k_256x256.py',
None,
device='cpu')
image_name = 'tests/data/onehand10k/9.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# InterHand2DDataset demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/hand/2d_kpt_sview_rgb_img/topdown_heatmap/'
'interhand2d/res50_interhand2d_all_256x256.py',
None,
device='cpu')
image_name = 'tests/data/interhand2.6m/image2017.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# Face300WDataset demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/face/2d_kpt_sview_rgb_img/topdown_heatmap/'
'300w/res50_300w_256x256.py',
None,
device='cpu')
image_name = 'tests/data/300w/indoor_020.png'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# FaceAFLWDataset demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/face/2d_kpt_sview_rgb_img/topdown_heatmap/'
'aflw/res50_aflw_256x256.py',
None,
device='cpu')
image_name = 'tests/data/aflw/image04476.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# FaceCOFWDataset demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/face/2d_kpt_sview_rgb_img/topdown_heatmap/'
'cofw/res50_cofw_256x256.py',
None,
device='cpu')
image_name = 'tests/data/cofw/001766.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
# test a single image, with a list of bboxes.
pose_results, _ = inference_top_down_pose_model(
pose_model,
image_name,
person_result,
format='xywh',
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# test video pose demo
# PoseWarper + PoseTrack18 demo
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/body/2d_kpt_sview_rgb_vid/posewarper/posetrack18/'
'hrnet_w48_posetrack18_384x288_posewarper_stage2.py',
None,
device='cpu')
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
person_result = []
# the last value is the confidence of bbox
person_result.append({'bbox': [50, 50, 50, 100, 0.5]})
# test a viedo folder
num_frames = len(pose_model.cfg.data_cfg.frame_weight_test)
video_folder = 'tests/data/posetrack18/videos/000001_mpiinew_test'
frames = sorted(glob(osp.join(video_folder, '*.jpg')))[:num_frames]
cur_frame = frames[0]
# test the frames in the format of image paths
pose_results, _ = inference_top_down_pose_model(
pose_model,
frames,
person_result,
format='xywh',
bbox_thr=0.3,
dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, cur_frame, pose_results, dataset_info=dataset_info)
# test when the person_result is None
pose_results, _ = inference_top_down_pose_model(
pose_model,
frames,
person_results=None,
format='xywh',
dataset_info=dataset_info)
# test a video file
video_path = 'tests/data/posetrack18/videos/000001_mpiinew_test/'\
'000001_mpiinew_test.mp4'
video = mmcv.VideoReader(video_path)
# get a sample for test
cur_frame = video[0]
frames = video[:num_frames]
person_result = []
person_result.append({'bbox': [50, 75, 100, 150, 0.6]})
# test the frames in the format of image array
pose_results, _ = inference_top_down_pose_model(
pose_model,
frames,
person_result,
bbox_thr=0.9,
format='xyxy',
dataset_info=dataset_info)
# # test the frames in the format of image array
pose_results, _ = inference_top_down_pose_model(
pose_model,
frames,
person_results=None,
format='xyxy',
dataset_info=dataset_info)
def test_bottom_up_demo():
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/body/2d_kpt_sview_rgb_img/associative_embedding/'
'coco/res50_coco_512x512.py',
None,
device='cpu')
image_name = 'tests/data/coco/000000000785.jpg'
dataset_info = DatasetInfo(pose_model.cfg.data['test'].get(
'dataset_info', None))
pose_results, _ = inference_bottom_up_pose_model(
pose_model, image_name, dataset_info=dataset_info)
# show the results
vis_pose_result(
pose_model, image_name, pose_results, dataset_info=dataset_info)
# test dataset_info without sigmas
pose_model_copy = copy.deepcopy(pose_model)
pose_model_copy.cfg.data.test.dataset_info.pop('sigmas')
pose_results, _ = inference_bottom_up_pose_model(
pose_model_copy, image_name, dataset_info=dataset_info)
def test_process_mmdet_results():
det_results = [np.array([0, 0, 100, 100])]
det_mask_results = None
_ = process_mmdet_results(
mmdet_results=(det_results, det_mask_results), cat_id=1)
_ = process_mmdet_results(mmdet_results=det_results, cat_id=1)
def test_collect_multi_frames():
# video file for test
video_path = 'tests/data/posetrack18/videos/000001_mpiinew_test/'\
'000001_mpiinew_test.mp4'
video = mmcv.VideoReader(video_path)
frame_id = 0
indices = [-1, -2, 0, 1, 2]
_ = collect_multi_frames(video, frame_id, indices, online=True)
_ = collect_multi_frames(video, frame_id, indices, online=False)
def test_hand_gesture_demo():
# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
'configs/hand/gesture_sview_rgbd_vid/mtut/nvgesture/'
'i3d_nvgesture_bbox_112x112_fps15.py',
None,
device='cpu')
dataset_info = pose_model.cfg.data['test'].get('dataset_info', None)
video_files = [
'tests/data/nvgesture/sk_color.avi',
'tests/data/nvgesture/sk_depth.avi'
]
with open('tests/data/nvgesture/bboxes.json', 'r') as f:
bbox = next(iter(json.load(f).values()))
pred_label, _ = inference_gesture_model(pose_model, video_files, bbox,
dataset_info)