show / mmpose-0.29.0 /tools /dataset /h36m_to_coco.py
camenduru's picture
thanks to show ❤
3bbb319
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from functools import wraps
import mmcv
import numpy as np
from PIL import Image
from mmpose.core import SimpleCamera
def _keypoint_camera_to_world(keypoints,
camera_params,
image_name=None,
dataset='Body3DH36MDataset'):
"""Project 3D keypoints from the camera space to the world space.
Args:
keypoints (np.ndarray): 3D keypoints in shape [..., 3]
camera_params (dict): Parameters for all cameras.
image_name (str): The image name to specify the camera.
dataset (str): The dataset type, e.g., Body3DH36MDataset.
"""
cam_key = None
if dataset == 'Body3DH36MDataset':
subj, rest = osp.basename(image_name).split('_', 1)
_, rest = rest.split('.', 1)
camera, rest = rest.split('_', 1)
cam_key = (subj, camera)
else:
raise NotImplementedError
camera = SimpleCamera(camera_params[cam_key])
keypoints_world = keypoints.copy()
keypoints_world[..., :3] = camera.camera_to_world(keypoints[..., :3])
return keypoints_world
def _get_bbox_xywh(center, scale, w=200, h=200):
w = w * scale
h = h * scale
x = center[0] - w / 2
y = center[1] - h / 2
return [x, y, w, h]
def mmcv_track_func(func):
@wraps(func)
def wrapped_func(args):
return func(*args)
return wrapped_func
@mmcv_track_func
def _get_img_info(img_idx, img_name, img_root):
try:
im = Image.open(osp.join(img_root, img_name))
w, h = im.size
except: # noqa: E722
return None
img = {
'file_name': img_name,
'height': h,
'width': w,
'id': img_idx + 1,
}
return img
@mmcv_track_func
def _get_ann(idx, kpt_2d, kpt_3d, center, scale, imgname, camera_params):
bbox = _get_bbox_xywh(center, scale)
kpt_3d = _keypoint_camera_to_world(kpt_3d, camera_params, imgname)
ann = {
'id': idx + 1,
'category_id': 1,
'image_id': idx + 1,
'iscrowd': 0,
'bbox': bbox,
'area': bbox[2] * bbox[3],
'num_keypoints': 17,
'keypoints': kpt_2d.reshape(-1).tolist(),
'keypoints_3d': kpt_3d.reshape(-1).tolist()
}
return ann
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--ann-file', type=str, default='tests/data/h36m/test_h36m_body3d.npz')
parser.add_argument(
'--camera-param-file', type=str, default='tests/data/h36m/cameras.pkl')
parser.add_argument('--img-root', type=str, default='tests/data/h36m')
parser.add_argument(
'--out-file', type=str, default='tests/data/h36m/h36m_coco.json')
parser.add_argument('--full-img-name', action='store_true')
args = parser.parse_args()
h36m_data = np.load(args.ann_file)
h36m_camera_params = mmcv.load(args.camera_param_file)
h36m_coco = {}
# categories
h36m_cats = [{
'supercategory':
'person',
'id':
1,
'name':
'person',
'keypoints': [
'root (pelvis)', 'left_hip', 'left_knee', 'left_foot', 'right_hip',
'right_knee', 'right_foot', 'spine', 'thorax', 'neck_base', 'head',
'left_shoulder', 'left_elbow', 'left_wrist', 'right_shoulder',
'right_elbow', 'right_wrist'
],
'skeleton': [[0, 1], [1, 2], [2, 3], [0, 4], [4, 5], [5, 6], [0, 7],
[7, 8], [8, 9], [9, 10], [8, 11], [11, 12], [12, 13],
[8, 14], [14, 15], [15, 16]],
}]
# images
imgnames = h36m_data['imgname']
if not args.full_img_name:
imgnames = [osp.basename(fn) for fn in imgnames]
tasks = [(idx, fn, args.img_root) for idx, fn in enumerate(imgnames)]
h36m_imgs = mmcv.track_parallel_progress(_get_img_info, tasks, nproc=12)
# annotations
kpts_2d = h36m_data['part']
kpts_3d = h36m_data['S']
centers = h36m_data['center']
scales = h36m_data['scale']
tasks = [(idx, ) + args + (h36m_camera_params, )
for idx, args in enumerate(
zip(kpts_2d, kpts_3d, centers, scales, imgnames))]
h36m_anns = mmcv.track_parallel_progress(_get_ann, tasks, nproc=12)
# remove invalid data
h36m_imgs = [img for img in h36m_imgs if img is not None]
h36m_img_ids = set([img['id'] for img in h36m_imgs])
h36m_anns = [ann for ann in h36m_anns if ann['image_id'] in h36m_img_ids]
h36m_coco = {
'categories': h36m_cats,
'images': h36m_imgs,
'annotations': h36m_anns,
}
mmcv.dump(h36m_coco, args.out_file)
if __name__ == '__main__':
main()