|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from annotator.uniformer.mmseg.core import add_prefix |
|
from annotator.uniformer.mmseg.ops import resize |
|
from .. import builder |
|
from ..builder import SEGMENTORS |
|
from .base import BaseSegmentor |
|
|
|
|
|
@SEGMENTORS.register_module() |
|
class EncoderDecoder(BaseSegmentor): |
|
"""Encoder Decoder segmentors. |
|
|
|
EncoderDecoder typically consists of backbone, decode_head, auxiliary_head. |
|
Note that auxiliary_head is only used for deep supervision during training, |
|
which could be dumped during inference. |
|
""" |
|
|
|
def __init__(self, |
|
backbone, |
|
decode_head, |
|
neck=None, |
|
auxiliary_head=None, |
|
train_cfg=None, |
|
test_cfg=None, |
|
pretrained=None): |
|
super(EncoderDecoder, self).__init__() |
|
self.backbone = builder.build_backbone(backbone) |
|
if neck is not None: |
|
self.neck = builder.build_neck(neck) |
|
self._init_decode_head(decode_head) |
|
self._init_auxiliary_head(auxiliary_head) |
|
|
|
self.train_cfg = train_cfg |
|
self.test_cfg = test_cfg |
|
|
|
self.init_weights(pretrained=pretrained) |
|
|
|
assert self.with_decode_head |
|
|
|
def _init_decode_head(self, decode_head): |
|
"""Initialize ``decode_head``""" |
|
self.decode_head = builder.build_head(decode_head) |
|
self.align_corners = self.decode_head.align_corners |
|
self.num_classes = self.decode_head.num_classes |
|
|
|
def _init_auxiliary_head(self, auxiliary_head): |
|
"""Initialize ``auxiliary_head``""" |
|
if auxiliary_head is not None: |
|
if isinstance(auxiliary_head, list): |
|
self.auxiliary_head = nn.ModuleList() |
|
for head_cfg in auxiliary_head: |
|
self.auxiliary_head.append(builder.build_head(head_cfg)) |
|
else: |
|
self.auxiliary_head = builder.build_head(auxiliary_head) |
|
|
|
def init_weights(self, pretrained=None): |
|
"""Initialize the weights in backbone and heads. |
|
|
|
Args: |
|
pretrained (str, optional): Path to pre-trained weights. |
|
Defaults to None. |
|
""" |
|
|
|
super(EncoderDecoder, self).init_weights(pretrained) |
|
self.backbone.init_weights(pretrained=pretrained) |
|
self.decode_head.init_weights() |
|
if self.with_auxiliary_head: |
|
if isinstance(self.auxiliary_head, nn.ModuleList): |
|
for aux_head in self.auxiliary_head: |
|
aux_head.init_weights() |
|
else: |
|
self.auxiliary_head.init_weights() |
|
|
|
def extract_feat(self, img): |
|
"""Extract features from images.""" |
|
x = self.backbone(img) |
|
if self.with_neck: |
|
x = self.neck(x) |
|
return x |
|
|
|
def encode_decode(self, img, img_metas): |
|
"""Encode images with backbone and decode into a semantic segmentation |
|
map of the same size as input.""" |
|
x = self.extract_feat(img) |
|
out = self._decode_head_forward_test(x, img_metas) |
|
out = resize( |
|
input=out, |
|
size=img.shape[2:], |
|
mode='bilinear', |
|
align_corners=self.align_corners) |
|
return out |
|
|
|
def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg): |
|
"""Run forward function and calculate loss for decode head in |
|
training.""" |
|
losses = dict() |
|
loss_decode = self.decode_head.forward_train(x, img_metas, |
|
gt_semantic_seg, |
|
self.train_cfg) |
|
|
|
losses.update(add_prefix(loss_decode, 'decode')) |
|
return losses |
|
|
|
def _decode_head_forward_test(self, x, img_metas): |
|
"""Run forward function and calculate loss for decode head in |
|
inference.""" |
|
seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg) |
|
return seg_logits |
|
|
|
def _auxiliary_head_forward_train(self, x, img_metas, gt_semantic_seg): |
|
"""Run forward function and calculate loss for auxiliary head in |
|
training.""" |
|
losses = dict() |
|
if isinstance(self.auxiliary_head, nn.ModuleList): |
|
for idx, aux_head in enumerate(self.auxiliary_head): |
|
loss_aux = aux_head.forward_train(x, img_metas, |
|
gt_semantic_seg, |
|
self.train_cfg) |
|
losses.update(add_prefix(loss_aux, f'aux_{idx}')) |
|
else: |
|
loss_aux = self.auxiliary_head.forward_train( |
|
x, img_metas, gt_semantic_seg, self.train_cfg) |
|
losses.update(add_prefix(loss_aux, 'aux')) |
|
|
|
return losses |
|
|
|
def forward_dummy(self, img): |
|
"""Dummy forward function.""" |
|
seg_logit = self.encode_decode(img, None) |
|
|
|
return seg_logit |
|
|
|
def forward_train(self, img, img_metas, gt_semantic_seg): |
|
"""Forward function for training. |
|
|
|
Args: |
|
img (Tensor): Input images. |
|
img_metas (list[dict]): List of image info dict where each dict |
|
has: 'img_shape', 'scale_factor', 'flip', and may also contain |
|
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. |
|
For details on the values of these keys see |
|
`mmseg/datasets/pipelines/formatting.py:Collect`. |
|
gt_semantic_seg (Tensor): Semantic segmentation masks |
|
used if the architecture supports semantic segmentation task. |
|
|
|
Returns: |
|
dict[str, Tensor]: a dictionary of loss components |
|
""" |
|
|
|
x = self.extract_feat(img) |
|
|
|
losses = dict() |
|
|
|
loss_decode = self._decode_head_forward_train(x, img_metas, |
|
gt_semantic_seg) |
|
losses.update(loss_decode) |
|
|
|
if self.with_auxiliary_head: |
|
loss_aux = self._auxiliary_head_forward_train( |
|
x, img_metas, gt_semantic_seg) |
|
losses.update(loss_aux) |
|
|
|
return losses |
|
|
|
|
|
def slide_inference(self, img, img_meta, rescale): |
|
"""Inference by sliding-window with overlap. |
|
|
|
If h_crop > h_img or w_crop > w_img, the small patch will be used to |
|
decode without padding. |
|
""" |
|
|
|
h_stride, w_stride = self.test_cfg.stride |
|
h_crop, w_crop = self.test_cfg.crop_size |
|
batch_size, _, h_img, w_img = img.size() |
|
num_classes = self.num_classes |
|
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1 |
|
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1 |
|
preds = img.new_zeros((batch_size, num_classes, h_img, w_img)) |
|
count_mat = img.new_zeros((batch_size, 1, h_img, w_img)) |
|
for h_idx in range(h_grids): |
|
for w_idx in range(w_grids): |
|
y1 = h_idx * h_stride |
|
x1 = w_idx * w_stride |
|
y2 = min(y1 + h_crop, h_img) |
|
x2 = min(x1 + w_crop, w_img) |
|
y1 = max(y2 - h_crop, 0) |
|
x1 = max(x2 - w_crop, 0) |
|
crop_img = img[:, :, y1:y2, x1:x2] |
|
crop_seg_logit = self.encode_decode(crop_img, img_meta) |
|
preds += F.pad(crop_seg_logit, |
|
(int(x1), int(preds.shape[3] - x2), int(y1), |
|
int(preds.shape[2] - y2))) |
|
|
|
count_mat[:, :, y1:y2, x1:x2] += 1 |
|
assert (count_mat == 0).sum() == 0 |
|
if torch.onnx.is_in_onnx_export(): |
|
|
|
count_mat = torch.from_numpy( |
|
count_mat.cpu().detach().numpy()).to(device=img.device) |
|
preds = preds / count_mat |
|
if rescale: |
|
preds = resize( |
|
preds, |
|
size=img_meta[0]['ori_shape'][:2], |
|
mode='bilinear', |
|
align_corners=self.align_corners, |
|
warning=False) |
|
return preds |
|
|
|
def whole_inference(self, img, img_meta, rescale): |
|
"""Inference with full image.""" |
|
|
|
seg_logit = self.encode_decode(img, img_meta) |
|
if rescale: |
|
|
|
if torch.onnx.is_in_onnx_export(): |
|
size = img.shape[2:] |
|
else: |
|
size = img_meta[0]['ori_shape'][:2] |
|
seg_logit = resize( |
|
seg_logit, |
|
size=size, |
|
mode='bilinear', |
|
align_corners=self.align_corners, |
|
warning=False) |
|
|
|
return seg_logit |
|
|
|
def inference(self, img, img_meta, rescale): |
|
"""Inference with slide/whole style. |
|
|
|
Args: |
|
img (Tensor): The input image of shape (N, 3, H, W). |
|
img_meta (dict): Image info dict where each dict has: 'img_shape', |
|
'scale_factor', 'flip', and may also contain |
|
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. |
|
For details on the values of these keys see |
|
`mmseg/datasets/pipelines/formatting.py:Collect`. |
|
rescale (bool): Whether rescale back to original shape. |
|
|
|
Returns: |
|
Tensor: The output segmentation map. |
|
""" |
|
|
|
assert self.test_cfg.mode in ['slide', 'whole'] |
|
ori_shape = img_meta[0]['ori_shape'] |
|
assert all(_['ori_shape'] == ori_shape for _ in img_meta) |
|
if self.test_cfg.mode == 'slide': |
|
seg_logit = self.slide_inference(img, img_meta, rescale) |
|
else: |
|
seg_logit = self.whole_inference(img, img_meta, rescale) |
|
output = F.softmax(seg_logit, dim=1) |
|
flip = img_meta[0]['flip'] |
|
if flip: |
|
flip_direction = img_meta[0]['flip_direction'] |
|
assert flip_direction in ['horizontal', 'vertical'] |
|
if flip_direction == 'horizontal': |
|
output = output.flip(dims=(3, )) |
|
elif flip_direction == 'vertical': |
|
output = output.flip(dims=(2, )) |
|
|
|
return output |
|
|
|
def simple_test(self, img, img_meta, rescale=True): |
|
"""Simple test with single image.""" |
|
seg_logit = self.inference(img, img_meta, rescale) |
|
seg_pred = seg_logit.argmax(dim=1) |
|
if torch.onnx.is_in_onnx_export(): |
|
|
|
seg_pred = seg_pred.unsqueeze(0) |
|
return seg_pred |
|
seg_pred = seg_pred.cpu().numpy() |
|
|
|
seg_pred = list(seg_pred) |
|
return seg_pred |
|
|
|
def aug_test(self, imgs, img_metas, rescale=True): |
|
"""Test with augmentations. |
|
|
|
Only rescale=True is supported. |
|
""" |
|
|
|
assert rescale |
|
|
|
seg_logit = self.inference(imgs[0], img_metas[0], rescale) |
|
for i in range(1, len(imgs)): |
|
cur_seg_logit = self.inference(imgs[i], img_metas[i], rescale) |
|
seg_logit += cur_seg_logit |
|
seg_logit /= len(imgs) |
|
seg_pred = seg_logit.argmax(dim=1) |
|
seg_pred = seg_pred.cpu().numpy() |
|
|
|
seg_pred = list(seg_pred) |
|
return seg_pred |
|
|