|
from annotator.uniformer.mmcv.cnn import build_conv_layer, build_norm_layer |
|
from torch import nn as nn |
|
|
|
|
|
class ResLayer(nn.Sequential): |
|
"""ResLayer to build ResNet style backbone. |
|
|
|
Args: |
|
block (nn.Module): block used to build ResLayer. |
|
inplanes (int): inplanes of block. |
|
planes (int): planes of block. |
|
num_blocks (int): number of blocks. |
|
stride (int): stride of the first block. Default: 1 |
|
avg_down (bool): Use AvgPool instead of stride conv when |
|
downsampling in the bottleneck. Default: False |
|
conv_cfg (dict): dictionary to construct and config conv layer. |
|
Default: None |
|
norm_cfg (dict): dictionary to construct and config norm layer. |
|
Default: dict(type='BN') |
|
multi_grid (int | None): Multi grid dilation rates of last |
|
stage. Default: None |
|
contract_dilation (bool): Whether contract first dilation of each layer |
|
Default: False |
|
""" |
|
|
|
def __init__(self, |
|
block, |
|
inplanes, |
|
planes, |
|
num_blocks, |
|
stride=1, |
|
dilation=1, |
|
avg_down=False, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
multi_grid=None, |
|
contract_dilation=False, |
|
**kwargs): |
|
self.block = block |
|
|
|
downsample = None |
|
if stride != 1 or inplanes != planes * block.expansion: |
|
downsample = [] |
|
conv_stride = stride |
|
if avg_down: |
|
conv_stride = 1 |
|
downsample.append( |
|
nn.AvgPool2d( |
|
kernel_size=stride, |
|
stride=stride, |
|
ceil_mode=True, |
|
count_include_pad=False)) |
|
downsample.extend([ |
|
build_conv_layer( |
|
conv_cfg, |
|
inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=conv_stride, |
|
bias=False), |
|
build_norm_layer(norm_cfg, planes * block.expansion)[1] |
|
]) |
|
downsample = nn.Sequential(*downsample) |
|
|
|
layers = [] |
|
if multi_grid is None: |
|
if dilation > 1 and contract_dilation: |
|
first_dilation = dilation // 2 |
|
else: |
|
first_dilation = dilation |
|
else: |
|
first_dilation = multi_grid[0] |
|
layers.append( |
|
block( |
|
inplanes=inplanes, |
|
planes=planes, |
|
stride=stride, |
|
dilation=first_dilation, |
|
downsample=downsample, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
**kwargs)) |
|
inplanes = planes * block.expansion |
|
for i in range(1, num_blocks): |
|
layers.append( |
|
block( |
|
inplanes=inplanes, |
|
planes=planes, |
|
stride=1, |
|
dilation=dilation if multi_grid is None else multi_grid[i], |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
**kwargs)) |
|
super(ResLayer, self).__init__(*layers) |
|
|