|
"""Modified from https://github.com/rwightman/pytorch-image- |
|
models/blob/master/timm/models/layers/drop.py.""" |
|
|
|
import math |
|
import warnings |
|
|
|
import torch |
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b): |
|
"""Reference: https://people.sc.fsu.edu/~jburkardt/presentations |
|
/truncated_normal.pdf""" |
|
|
|
def norm_cdf(x): |
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn( |
|
'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. ' |
|
'The distribution of values may be incorrect.', |
|
stacklevel=2) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
lower_bound = norm_cdf((a - mean) / std) |
|
upper_bound = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * lower_bound - 1, 2 * upper_bound - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): |
|
r"""Fills the input Tensor with values drawn from a truncated |
|
normal distribution. The values are effectively drawn from the |
|
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` |
|
with values outside :math:`[a, b]` redrawn until they are within |
|
the bounds. The method used for generating the random values works |
|
best when :math:`a \leq \text{mean} \leq b`. |
|
Args: |
|
tensor (``torch.Tensor``): an n-dimensional `torch.Tensor` |
|
mean (float): the mean of the normal distribution |
|
std (float): the standard deviation of the normal distribution |
|
a (float): the minimum cutoff value |
|
b (float): the maximum cutoff value |
|
""" |
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b) |
|
|