Edit model card

he

This model is a fine-tuned version of openai/whisper-medium-ori on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0478
  • Wer: 7.1707

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.3738 0.02 50 0.1757 6.6641
0.1077 0.03 100 0.1403 33.0086
0.1118 0.05 150 0.1070 40.2962
0.0848 0.07 200 0.1144 16.7966
0.0879 0.08 250 0.1032 21.4341
0.0786 0.1 300 0.0971 7.0538
0.0665 0.11 350 0.0940 15.3157
0.0631 0.13 400 0.0868 14.6142
0.0591 0.15 450 0.0965 27.0460
0.0574 0.16 500 0.0807 19.0959
0.0536 0.18 550 0.0804 12.4318
0.0443 0.2 600 0.0791 3.9751
0.0455 0.21 650 0.0881 12.9774
0.0435 0.23 700 0.0772 6.0016
0.0439 0.25 750 0.0750 13.9906
0.0317 0.26 800 0.0645 9.4310
0.0352 0.28 850 0.0664 5.9626
0.0328 0.29 900 0.0633 8.4178
0.0287 0.31 950 0.0658 15.5105
0.0266 0.33 1000 0.0570 10.2494
0.0209 0.34 1050 0.0613 7.4825
0.0272 0.36 1100 0.0599 6.8589
0.024 0.38 1150 0.0583 10.8730
0.0203 0.39 1200 0.0538 8.0670
0.0187 0.41 1250 0.0508 5.4949
0.0165 0.43 1300 0.0507 6.8200
0.0106 0.44 1350 0.0504 7.3266
0.0203 0.46 1400 0.0477 7.7163
0.0142 0.48 1450 0.0480 7.5994
0.0194 0.49 1500 0.0478 7.1707

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
1
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.