File size: 3,132 Bytes
ad1b519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
datasets:
- cardiffnlp/tweet_topic_multi
metrics:
- f1
- accuracy
model-index:
- name: cardiffnlp/roberta-large-tweet-topic-multi-2020
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: cardiffnlp/tweet_topic_multi
      type: cardiffnlp/tweet_topic_multi
      args: cardiffnlp/tweet_topic_multi
      split: test_2021 
    metrics:
    - name: F1
      type: f1
      value: 0.7323655694132079
    - name: F1 (macro)
      type: f1_macro
      value: 0.5794562917377284
    - name: Accuracy
      type: accuracy
      value: 0.4937462775461584
pipeline_tag: text-classification
widget:
- text: "I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but man does their experience versus the Blue Jackets this year and last help them a lot versus this Islanders team. Another meat grinder upcoming for the good guys"
  example_title: "Example 1"
- text: "Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US." 
  example_title: "Example 2"
---
# cardiffnlp/roberta-large-tweet-topic-multi-2020

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tweet_topic_multi](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi). This model is fine-tuned on `train_2020` split and validated on `test_2021` split of tweet_topic.
Fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi/blob/main/lm_finetuning.py). It achieves the following results on the test_2021 set:

- F1 (micro): 0.7323655694132079
- F1 (macro): 0.5794562917377284
- Accuracy: 0.4937462775461584


### Usage

```python
import math
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

def sigmoid(x):
  return 1 / (1 + math.exp(-x))
  
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/roberta-large-tweet-topic-multi-2020")
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/roberta-large-tweet-topic-multi-2020", problem_type="multi_label_classification")
model.eval()
class_mapping = model.config.id2label

with torch.no_grad():
  text = #NewVideo Cray Dollas- Water- Ft. Charlie Rose- (Official Music Video)- {{URL}} via {@YouTube@} #watchandlearn {{USERNAME}}
  tokens = tokenizer(text, return_tensors='pt')
  output = model(**tokens)
  flags = [sigmoid(s) > 0.5 for s in output[0][0].detach().tolist()]
  topic = [class_mapping[n] for n, i in enumerate(flags) if i]
print(topic)
```

### Reference

```

@inproceedings{dimosthenis-etal-2022-twitter,
    title = "{T}witter {T}opic {C}lassification",
    author = "Antypas, Dimosthenis  and
    Ushio, Asahi  and
    Camacho-Collados, Jose  and
    Neves, Leonardo  and
    Silva, Vitor  and
    Barbieri, Francesco",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics"
}

```