File size: 2,236 Bytes
1576eb3 0f13b53 1576eb3 0f13b53 1576eb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# tweet-topic-19-single
This is a roBERTa-base model trained on ~90m tweets until the end of 2019 (see [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m)), and finetuned for single-label topic classification on a corpus of 6,997 [tweets](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single).
The original roBERTa-base model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) and the original reference paper is [TweetEval](https://github.com/cardiffnlp/tweeteval). This model is suitable for English.
- Reference Papers: [TimeLMs paper](https://arxiv.org/abs/2202.03829), [TweetTopic](https://arxiv.org/abs/2209.09824).
- Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms).
<b>Labels</b>:
- 0 -> arts_&_culture;
- 1 -> business_&_entrepreneurs;
- 2 -> pop_culture;
- 3 -> daily_life;
- 4 -> sports_&_gaming;
- 5 -> science_&_technology
## Full classification example
```python
from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
import numpy as np
from scipy.special import softmax
MODEL = f"cardiffnlp/tweet-topic-19-single"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
class_mapping = model.config.id2label
text = "Tesla stock is on the rise!"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
# TF
#model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
#class_mapping = model.config.id2label
#text = "Tesla stock is on the rise!"
#encoded_input = tokenizer(text, return_tensors='tf')
#output = model(**encoded_input)
#scores = output[0][0]
#scores = softmax(scores)
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
l = class_mapping[ranking[i]]
s = scores[ranking[i]]
print(f"{i+1}) {l} {np.round(float(s), 4)}")
```
Output:
```
1) business_&_entrepreneurs 0.8575
2) science_&_technology 0.0604
3) pop_culture 0.0295
4) daily_life 0.0217
5) sports_&_gaming 0.0154
6) arts_&_culture 0.0154
``` |