Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# tweet-topic-19-single
|
2 |
+
|
3 |
+
This is a roBERTa-base model trained on ~90m tweets until the end of 2019 (see [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m)), and finetuned for single-label topic classification on a corpus of 6,997 tweets.
|
4 |
+
The original roBERTa-base model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) and the original reference paper is [TweetEval](https://github.com/cardiffnlp/tweeteval). This model is suitable for English.
|
5 |
+
|
6 |
+
- Reference Paper: [TimeLMs paper](https://arxiv.org/abs/2202.03829).
|
7 |
+
- Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms).
|
8 |
+
|
9 |
+
<b>Labels</b>:
|
10 |
+
0 -> arts_&_culture
|
11 |
+
1 -> business_&_entrepreneurs
|
12 |
+
2 -> pop_culture
|
13 |
+
3 -> daily_life
|
14 |
+
4 -> sports_&_gaming
|
15 |
+
5 -> science_&_technology
|
16 |
+
|
17 |
+
|
18 |
+
## Full classification example
|
19 |
+
|
20 |
+
```python
|
21 |
+
from transformers import AutoModelForSequenceClassification
|
22 |
+
from transformers import AutoTokenizer
|
23 |
+
import numpy as np
|
24 |
+
from scipy.special import softmax
|
25 |
+
|
26 |
+
MODEL = f"antypasd/tweet-topic-19-single"
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
28 |
+
# PT
|
29 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
30 |
+
class_mapping = model.config.id2label
|
31 |
+
text = "Tesla stock is on the rise!"
|
32 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
33 |
+
output = model(**encoded_input)
|
34 |
+
output = model(**encoded_input)
|
35 |
+
scores = output[0][0].detach().numpy()
|
36 |
+
scores = softmax(scores)
|
37 |
+
ranking = np.argsort(scores)
|
38 |
+
ranking = ranking[::-1]
|
39 |
+
for i in range(scores.shape[0]):
|
40 |
+
l = class_mapping[ranking[i]]
|
41 |
+
s = scores[ranking[i]]
|
42 |
+
print(f"{i+1}) {l} {np.round(float(s), 4)}")
|
43 |
+
```
|
44 |
+
|
45 |
+
Output:
|
46 |
+
|
47 |
+
```
|
48 |
+
1) business_&_entrepreneurs 0.8575
|
49 |
+
2) science_&_technology 0.0604
|
50 |
+
3) pop_culture 0.0295
|
51 |
+
4) daily_life 0.0217
|
52 |
+
5) sports_&_gaming 0.0154
|
53 |
+
6) arts_&_culture 0.0154
|
54 |
+
```
|