File size: 2,706 Bytes
5e8f546
ef395b7
92be862
5e8f546
ef395b7
5e8f546
 
ef395b7
5e8f546
ef395b7
 
5e8f546
 
 
 
 
 
ef395b7
 
5e8f546
ef395b7
5e8f546
92be862
5e8f546
 
 
ef395b7
5e8f546
 
 
ef395b7
5e8f546
 
 
ef395b7
5e8f546
 
 
ef395b7
5e8f546
 
 
ef395b7
92be862
 
 
 
 
 
 
 
 
 
 
5e8f546
 
 
 
ef395b7
5e8f546
 
ef395b7
5e8f546
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# tweet-topic-21-multi

This is a roBERTa-base model trained on ~124M tweets from January 2018 to December 2021 (see [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m)), and finetuned for multi-label topic classification on a corpus of 11,267 tweets.
The original roBERTa-base model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) and the original reference paper is [TweetEval](https://github.com/cardiffnlp/tweeteval). This model is suitable for English. 

- Reference Paper: [TimeLMs paper](https://arxiv.org/abs/2202.03829). 
- Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms).

<b>Labels</b>: 


| <span style="font-weight:normal">0: arts_&_culture</span>           | <span style="font-weight:normal">5: fashion_&_style</span>   | <span style="font-weight:normal">10: learning_&_educational</span>  | <span style="font-weight:normal">15: science_&_technology</span>  |
|-----------------------------|---------------------|----------------------------|--------------------------|
| 1: business_&_entrepreneurs | 6: film_tv_&_video  | 11: music                  | 16: sports               |
| 2: celebrity_&_pop_culture  | 7: fitness_&_health | 12: news_&_social_concern  | 17: travel_&_adventure   |
| 3: diaries_&_daily_life     | 8: food_&_dining    | 13: other_hobbies          | 18: youth_&_student_life |
| 4: family                   | 9: gaming           | 14: relationships          |                          |


## Full classification example

```python
from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
import numpy as np
from scipy.special import expit

    
MODEL = f"antypasd/tweet-topic-21-single"
tokenizer = AutoTokenizer.from_pretrained(MODEL)

# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
class_mapping = model.config.id2label

text = "It is great to see athletes promoting awareness for climate change."
tokens = tokenizer(text, return_tensors='pt')
output = model(**tokens)

scores = output[0][0].detach().numpy()
scores = expit(scores)
predictions = (scores >= 0.5) * 1


# TF
#tf_model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
#class_mapping = model.config.id2label
#text = "It is great to see athletes promoting awareness for climate change."
#tokens = tokenizer(text, return_tensors='tf')
#output = tf_model(**tokens)
#scores = output[0][0]
#scores = expit(scores)
#predictions = (scores >= 0.5) * 1

# Map to classes
for i in range(len(predictions)):
  if predictions[i]:
    print(class_mapping[i])

```
Output: 

```
news_&_social_concern
sports
```