antypasd commited on
Commit
e25fdf3
1 Parent(s): afc2255

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -1,9 +1,9 @@
1
  # tweet-topic-21-multi
2
 
3
- This is a roBERTa-base model trained on ~124M tweets from January 2018 to December 2021 (see [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m)), and finetuned for multi-label topic classification on a corpus of 11,267 tweets.
4
- The original roBERTa-base model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) and the original reference paper is [TweetEval](https://github.com/cardiffnlp/tweeteval). This model is suitable for English.
5
 
6
- - Reference Paper: [TimeLMs paper](https://arxiv.org/abs/2202.03829).
7
  - Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms).
8
 
9
  <b>Labels</b>:
@@ -44,7 +44,7 @@ predictions = (scores >= 0.5) * 1
44
 
45
  # TF
46
  #tf_model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
47
- #class_mapping = model.config.id2label
48
  #text = "It is great to see athletes promoting awareness for climate change."
49
  #tokens = tokenizer(text, return_tensors='tf')
50
  #output = tf_model(**tokens)
 
1
  # tweet-topic-21-multi
2
 
3
+ This is a RoBERTa-base model trained on ~124M tweets from January 2018 to December 2021 (see [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m)), and finetuned for multi-label topic classification on a corpus of 11,267 [tweets](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi).
4
+ The original RoBERTa-base model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) and the original reference paper is [TweetEval](https://github.com/cardiffnlp/tweeteval). This model is suitable for English.
5
 
6
+ - Reference Papers: [TimeLMs paper](https://arxiv.org/abs/2202.03829), [TweetTopic](https://arxiv.org/abs/2209.09824).
7
  - Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms).
8
 
9
  <b>Labels</b>:
 
44
 
45
  # TF
46
  #tf_model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
47
+ #class_mapping = tf_model.config.id2label
48
  #text = "It is great to see athletes promoting awareness for climate change."
49
  #tokens = tokenizer(text, return_tensors='tf')
50
  #output = tf_model(**tokens)