# tweet-topic-21-multi This is a roBERTa-base model trained on ~124M tweets from January 2018 to December 2021 (see [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m)), and finetuned for multi-label topic classification on a corpus of 11,267 tweets. The original roBERTa-base model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m) and the original reference paper is [TweetEval](https://github.com/cardiffnlp/tweeteval). This model is suitable for English. - Reference Paper: [TimeLMs paper](https://arxiv.org/abs/2202.03829). - Git Repo: [TimeLMs official repository](https://github.com/cardiffnlp/timelms). Labels: | 0: arts_&_culture | 5: fashion_&_style | 10: learning_&_educational | 15: science_&_technology | |-----------------------------|---------------------|----------------------------|--------------------------| | 1: business_&_entrepreneurs | 6: film_tv_&_video | 11: music | 16: sports | | 2: celebrity_&_pop_culture | 7: fitness_&_health | 12: news_&_social_concern | 17: travel_&_adventure | | 3: diaries_&_daily_life | 8: food_&_dining | 13: other_hobbies | 18: youth_&_student_life | | 4: family | 9: gaming | 14: relationships | | ## Full classification example ```python from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import expit MODEL = f"antypasd/tweet-topic-21-single" tokenizer = AutoTokenizer.from_pretrained(MODEL) # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) class_mapping = model.config.id2label text = "It is great to see athletes promoting awareness for climate change." tokens = tokenizer(text, return_tensors='pt') output = model(**tokens) scores = output[0][0].detach().numpy() scores = expit(scores) predictions = (scores >= 0.5) * 1 # TF #tf_model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) #class_mapping = model.config.id2label #text = "It is great to see athletes promoting awareness for climate change." #tokens = tokenizer(text, return_tensors='tf') #output = tf_model(**tokens) #scores = output[0][0] #scores = expit(scores) #predictions = (scores >= 0.5) * 1 # Map to classes for i in range(len(predictions)): if predictions[i]: print(class_mapping[i]) ``` Output: ``` news_&_social_concern sports ```