Text Classification
Safetensors
xlm-roberta
Pedrada's picture
Add paper
c0d774f verified
|
raw
history blame
3.17 kB
---
language:
- en
- es
- ja
- el
widget:
- text: It is great to see athletes promoting awareness for climate change.
datasets:
- cardiffnlp/tweet_topic_multi
- cardiffnlp/tweet_topic_multilingual
license: mit
metrics:
- f1
pipeline_tag: text-classification
---
# tweet-topic-base-multilingual
This model is based on [cardiffnlp/twitter-xlm-roberta-base](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base) language model trained rained on ~198M multilingual tweets and finetuned for multi-label topic classification in English, Spanish, Japanese, and Greek.
The models is trained using [TweetTopic](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi) and [X-Topic](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multilingual) datasets (see main [EMNLP 2024 reference paper](https://arxiv.org/abs/2410.03075)).
<b>Labels</b>:
| <span style="font-weight:normal">0: arts_&_culture</span> | <span style="font-weight:normal">5: fashion_&_style</span> | <span style="font-weight:normal">10: learning_&_educational</span> | <span style="font-weight:normal">15: science_&_technology</span> |
|-----------------------------|---------------------|----------------------------|--------------------------|
| 1: business_&_entrepreneurs | 6: film_tv_&_video | 11: music | 16: sports |
| 2: celebrity_&_pop_culture | 7: fitness_&_health | 12: news_&_social_concern | 17: travel_&_adventure |
| 3: diaries_&_daily_life | 8: food_&_dining | 13: other_hobbies | 18: youth_&_student_life |
| 4: family | 9: gaming | 14: relationships | |
## Full classification example
```python
from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
import numpy as np
from scipy.special import expit
MODEL = f"cardiffnlp/tweet-topic-base-multilingual"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
class_mapping = model.config.id2label
text = "It is great to see athletes promoting awareness for climate change."
tokens = tokenizer(text, return_tensors='pt')
output = model(**tokens)
scores = output[0][0].detach().numpy()
scores = expit(scores)
predictions = (scores >= 0.5) * 1
# TF
#tf_model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
#class_mapping = tf_model.config.id2label
#text = "It is great to see athletes promoting awareness for climate change."
#tokens = tokenizer(text, return_tensors='tf')
#output = tf_model(**tokens)
#scores = output[0][0]
#scores = expit(scores)
#predictions = (scores >= 0.5) * 1
# Map to classes
for i in range(len(predictions)):
if predictions[i]:
print(class_mapping[i])
```
Output:
```
news_&_social_concern
sports
```
## Results on X-Topic
| | English | Spanish | Japanese | Greek |
|--------------|---------|---------|----------|-------|
| **Macro-F1** | 55.4 | 48.5 | 50.8 | 41.3 |
| **Micro-F1** | 63.5 | 63.3 | 57.8 | 69.8 |
## BibTeX entry and citation info
TBA