Upload 14 files
Browse files- README.md +161 -0
- config.json +27 -0
- merges.txt +0 -0
- optimizer.pt +3 -0
- pytorch_model.bin +3 -0
- rng_state.pth +3 -0
- scaler.pt +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +16 -0
- trainer_state.json +907 -0
- training_args.bin +3 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- timelms
|
5 |
+
- twitter
|
6 |
+
license: mit
|
7 |
+
datasets:
|
8 |
+
- twitter-api
|
9 |
+
---
|
10 |
+
|
11 |
+
# Twitter 2022 154M (RoBERTa-base, 154M - full update)
|
12 |
+
|
13 |
+
This is a RoBERTa-base model trained on 154M tweets until the end of December 2022 (from original checkpoint, no incremental updates).
|
14 |
+
These 154M tweets result from filtering 220M tweets obtained exclusively from the Twitter Academic API, covering every month between 2018-01 and 2022-12.
|
15 |
+
Filtering and preprocessing details are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829).
|
16 |
+
|
17 |
+
Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms).
|
18 |
+
|
19 |
+
For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models).
|
20 |
+
|
21 |
+
## Preprocess Text
|
22 |
+
Replace usernames and links for placeholders: "@user" and "http".
|
23 |
+
If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data).
|
24 |
+
```python
|
25 |
+
def preprocess(text):
|
26 |
+
preprocessed_text = []
|
27 |
+
for t in text.split():
|
28 |
+
if len(t) > 1:
|
29 |
+
t = '@user' if t[0] == '@' and t.count('@') == 1 else t
|
30 |
+
t = 'http' if t.startswith('http') else t
|
31 |
+
preprocessed_text.append(t)
|
32 |
+
return ' '.join(preprocessed_text)
|
33 |
+
```
|
34 |
+
|
35 |
+
## Example Masked Language Model
|
36 |
+
|
37 |
+
```python
|
38 |
+
from transformers import pipeline, AutoTokenizer
|
39 |
+
|
40 |
+
MODEL = "cardiffnlp/twitter-roberta-base-2022-154m"
|
41 |
+
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
43 |
+
|
44 |
+
def pprint(candidates, n):
|
45 |
+
for i in range(n):
|
46 |
+
token = tokenizer.decode(candidates[i]['token'])
|
47 |
+
score = candidates[i]['score']
|
48 |
+
print("%d) %.5f %s" % (i+1, score, token))
|
49 |
+
|
50 |
+
texts = [
|
51 |
+
"So glad I'm <mask> vaccinated.",
|
52 |
+
"I keep forgetting to bring a <mask>.",
|
53 |
+
"Looking forward to watching <mask> Game tonight!",
|
54 |
+
]
|
55 |
+
for text in texts:
|
56 |
+
t = preprocess(text)
|
57 |
+
print(f"{'-'*30}\n{t}")
|
58 |
+
candidates = fill_mask(t)
|
59 |
+
pprint(candidates, 5)
|
60 |
+
```
|
61 |
+
|
62 |
+
Output:
|
63 |
+
|
64 |
+
```
|
65 |
+
------------------------------
|
66 |
+
So glad I'm <mask> vaccinated.
|
67 |
+
1) 0.60140 not
|
68 |
+
2) 0.15077 getting
|
69 |
+
3) 0.12119 fully
|
70 |
+
4) 0.02203 still
|
71 |
+
5) 0.01020 all
|
72 |
+
------------------------------
|
73 |
+
I keep forgetting to bring a <mask>.
|
74 |
+
1) 0.05812 charger
|
75 |
+
2) 0.05040 backpack
|
76 |
+
3) 0.05004 book
|
77 |
+
4) 0.04548 bag
|
78 |
+
5) 0.03992 lighter
|
79 |
+
------------------------------
|
80 |
+
Looking forward to watching <mask> Game tonight!
|
81 |
+
1) 0.39552 the
|
82 |
+
2) 0.28083 The
|
83 |
+
3) 0.02029 End
|
84 |
+
4) 0.01878 Squid
|
85 |
+
5) 0.01438 this
|
86 |
+
```
|
87 |
+
|
88 |
+
## Example Tweet Embeddings
|
89 |
+
```python
|
90 |
+
from transformers import AutoTokenizer, AutoModel, TFAutoModel
|
91 |
+
import numpy as np
|
92 |
+
from scipy.spatial.distance import cosine
|
93 |
+
from collections import Counter
|
94 |
+
|
95 |
+
def get_embedding(text): # naive approach for demonstration
|
96 |
+
text = preprocess(text)
|
97 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
98 |
+
features = model(**encoded_input)
|
99 |
+
features = features[0].detach().cpu().numpy()
|
100 |
+
return np.mean(features[0], axis=0)
|
101 |
+
|
102 |
+
|
103 |
+
MODEL = "cardiffnlp/twitter-roberta-base-2022-154m"
|
104 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
105 |
+
model = AutoModel.from_pretrained(MODEL)
|
106 |
+
|
107 |
+
query = "The book was awesome"
|
108 |
+
tweets = ["I just ordered fried chicken 🐣",
|
109 |
+
"The movie was great",
|
110 |
+
"What time is the next game?",
|
111 |
+
"Just finished reading 'Embeddings in NLP'"]
|
112 |
+
|
113 |
+
sims = Counter()
|
114 |
+
for tweet in tweets:
|
115 |
+
sim = 1 - cosine(get_embedding(query), get_embedding(tweet))
|
116 |
+
sims[tweet] = sim
|
117 |
+
|
118 |
+
print('Most similar to: ', query)
|
119 |
+
print(f"{'-'*30}")
|
120 |
+
for idx, (tweet, sim) in enumerate(sims.most_common()):
|
121 |
+
print("%d) %.5f %s" % (idx+1, sim, tweet))
|
122 |
+
```
|
123 |
+
Output:
|
124 |
+
|
125 |
+
```
|
126 |
+
Most similar to: The book was awesome
|
127 |
+
------------------------------
|
128 |
+
1) 0.98914 The movie was great
|
129 |
+
2) 0.96194 Just finished reading 'Embeddings in NLP'
|
130 |
+
3) 0.94603 What time is the next game?
|
131 |
+
4) 0.94580 I just ordered fried chicken 🐣
|
132 |
+
```
|
133 |
+
|
134 |
+
## Example Feature Extraction
|
135 |
+
|
136 |
+
```python
|
137 |
+
from transformers import AutoTokenizer, AutoModel, TFAutoModel
|
138 |
+
import numpy as np
|
139 |
+
|
140 |
+
MODEL = "cardiffnlp/twitter-roberta-base-2022-154m"
|
141 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
142 |
+
|
143 |
+
text = "Good night 😊"
|
144 |
+
text = preprocess(text)
|
145 |
+
|
146 |
+
# Pytorch
|
147 |
+
model = AutoModel.from_pretrained(MODEL)
|
148 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
149 |
+
features = model(**encoded_input)
|
150 |
+
features = features[0].detach().cpu().numpy()
|
151 |
+
features_mean = np.mean(features[0], axis=0)
|
152 |
+
#features_max = np.max(features[0], axis=0)
|
153 |
+
|
154 |
+
# # Tensorflow
|
155 |
+
# model = TFAutoModel.from_pretrained(MODEL)
|
156 |
+
# encoded_input = tokenizer(text, return_tensors='tf')
|
157 |
+
# features = model(encoded_input)
|
158 |
+
# features = features[0].numpy()
|
159 |
+
# features_mean = np.mean(features[0], axis=0)
|
160 |
+
# #features_max = np.max(features[0], axis=0)
|
161 |
+
```
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.27.0.dev0",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 50265
|
27 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee102536c94f31edde08526cf9727ec7cda55a1ffe050c90cf59c914978ec101
|
3 |
+
size 997696473
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:222d589484e0b5b5a69fb3305e171ddd46456c662cc34644e6f80a228c8a47fc
|
3 |
+
size 498861675
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f899aba43676eaadd99f526ba5c91001b01065923c37e1aebe33dc8746e60a7e
|
3 |
+
size 21579
|
scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7db3637ff6d8fdf8d724111c86ee2fb5f41dedf8d3cb14acfa63d0ed830a0d68
|
3 |
+
size 559
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:693f659bcad9eaafb36a940b28a69a24887719e7d09301b507e68c3c611acafa
|
3 |
+
size 623
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<s>",
|
4 |
+
"cls_token": "<s>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"errors": "replace",
|
7 |
+
"mask_token": "<mask>",
|
8 |
+
"model_max_length": 512,
|
9 |
+
"name_or_path": "roberta-base",
|
10 |
+
"pad_token": "<pad>",
|
11 |
+
"sep_token": "</s>",
|
12 |
+
"special_tokens_map_file": null,
|
13 |
+
"tokenizer_class": "RobertaTokenizer",
|
14 |
+
"trim_offsets": true,
|
15 |
+
"unk_token": "<unk>"
|
16 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,907 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.5714025899946678,
|
5 |
+
"global_step": 54000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.03,
|
12 |
+
"learning_rate": 5e-06,
|
13 |
+
"loss": 2.5739,
|
14 |
+
"step": 500
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.07,
|
18 |
+
"learning_rate": 1e-05,
|
19 |
+
"loss": 2.3712,
|
20 |
+
"step": 1000
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.1,
|
24 |
+
"learning_rate": 9.999669290296979e-06,
|
25 |
+
"loss": 2.3057,
|
26 |
+
"step": 1500
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.13,
|
30 |
+
"learning_rate": 9.999338580593956e-06,
|
31 |
+
"loss": 2.2676,
|
32 |
+
"step": 2000
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.13,
|
36 |
+
"eval_accuracy": 0.624435573588116,
|
37 |
+
"eval_loss": 2.00943922996521,
|
38 |
+
"eval_runtime": 4.2994,
|
39 |
+
"eval_samples_per_second": 930.363,
|
40 |
+
"eval_steps_per_second": 1.628,
|
41 |
+
"step": 2000
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 0.17,
|
45 |
+
"learning_rate": 9.999007870890934e-06,
|
46 |
+
"loss": 2.2392,
|
47 |
+
"step": 2500
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 0.2,
|
51 |
+
"learning_rate": 9.99867716118791e-06,
|
52 |
+
"loss": 2.2181,
|
53 |
+
"step": 3000
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 0.23,
|
57 |
+
"learning_rate": 9.998346451484888e-06,
|
58 |
+
"loss": 2.2015,
|
59 |
+
"step": 3500
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.26,
|
63 |
+
"learning_rate": 9.998016403201271e-06,
|
64 |
+
"loss": 2.1881,
|
65 |
+
"step": 4000
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.26,
|
69 |
+
"eval_accuracy": 0.6230075777371309,
|
70 |
+
"eval_loss": 1.980251431465149,
|
71 |
+
"eval_runtime": 4.1905,
|
72 |
+
"eval_samples_per_second": 954.545,
|
73 |
+
"eval_steps_per_second": 1.67,
|
74 |
+
"step": 4000
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.3,
|
78 |
+
"learning_rate": 9.997685693498247e-06,
|
79 |
+
"loss": 2.1754,
|
80 |
+
"step": 4500
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.33,
|
84 |
+
"learning_rate": 9.997354983795225e-06,
|
85 |
+
"loss": 2.1646,
|
86 |
+
"step": 5000
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.36,
|
90 |
+
"learning_rate": 9.997024274092203e-06,
|
91 |
+
"loss": 2.155,
|
92 |
+
"step": 5500
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.4,
|
96 |
+
"learning_rate": 9.99669356438918e-06,
|
97 |
+
"loss": 2.1462,
|
98 |
+
"step": 6000
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.4,
|
102 |
+
"eval_accuracy": 0.6319083064356762,
|
103 |
+
"eval_loss": 1.9461042881011963,
|
104 |
+
"eval_runtime": 4.2092,
|
105 |
+
"eval_samples_per_second": 950.295,
|
106 |
+
"eval_steps_per_second": 1.663,
|
107 |
+
"step": 6000
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.43,
|
111 |
+
"learning_rate": 9.996362854686157e-06,
|
112 |
+
"loss": 2.1369,
|
113 |
+
"step": 6500
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.46,
|
117 |
+
"learning_rate": 9.996032144983134e-06,
|
118 |
+
"loss": 2.129,
|
119 |
+
"step": 7000
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"epoch": 0.5,
|
123 |
+
"learning_rate": 9.995701435280112e-06,
|
124 |
+
"loss": 2.1228,
|
125 |
+
"step": 7500
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 0.53,
|
129 |
+
"learning_rate": 9.99537072557709e-06,
|
130 |
+
"loss": 2.1163,
|
131 |
+
"step": 8000
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"epoch": 0.53,
|
135 |
+
"eval_accuracy": 0.630312540865699,
|
136 |
+
"eval_loss": 1.9446306228637695,
|
137 |
+
"eval_runtime": 4.1812,
|
138 |
+
"eval_samples_per_second": 956.66,
|
139 |
+
"eval_steps_per_second": 1.674,
|
140 |
+
"step": 8000
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.56,
|
144 |
+
"learning_rate": 9.995040677293473e-06,
|
145 |
+
"loss": 2.1093,
|
146 |
+
"step": 8500
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.6,
|
150 |
+
"learning_rate": 9.994709967590451e-06,
|
151 |
+
"loss": 2.1049,
|
152 |
+
"step": 9000
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.63,
|
156 |
+
"learning_rate": 9.994379257887427e-06,
|
157 |
+
"loss": 2.0986,
|
158 |
+
"step": 9500
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.66,
|
162 |
+
"learning_rate": 9.994048548184405e-06,
|
163 |
+
"loss": 2.0949,
|
164 |
+
"step": 10000
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.66,
|
168 |
+
"eval_accuracy": 0.6310234052317577,
|
169 |
+
"eval_loss": 1.9502341747283936,
|
170 |
+
"eval_runtime": 4.3076,
|
171 |
+
"eval_samples_per_second": 928.598,
|
172 |
+
"eval_steps_per_second": 1.625,
|
173 |
+
"step": 10000
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 0.69,
|
177 |
+
"learning_rate": 9.993717838481381e-06,
|
178 |
+
"loss": 2.09,
|
179 |
+
"step": 10500
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.73,
|
183 |
+
"learning_rate": 9.993387790197764e-06,
|
184 |
+
"loss": 2.0861,
|
185 |
+
"step": 11000
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.76,
|
189 |
+
"learning_rate": 9.993057080494742e-06,
|
190 |
+
"loss": 2.08,
|
191 |
+
"step": 11500
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.79,
|
195 |
+
"learning_rate": 9.99272637079172e-06,
|
196 |
+
"loss": 2.0752,
|
197 |
+
"step": 12000
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 0.79,
|
201 |
+
"eval_accuracy": 0.6285732890538517,
|
202 |
+
"eval_loss": 1.9644430875778198,
|
203 |
+
"eval_runtime": 4.1884,
|
204 |
+
"eval_samples_per_second": 955.011,
|
205 |
+
"eval_steps_per_second": 1.671,
|
206 |
+
"step": 12000
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.83,
|
210 |
+
"learning_rate": 9.992395661088698e-06,
|
211 |
+
"loss": 2.0717,
|
212 |
+
"step": 12500
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.86,
|
216 |
+
"learning_rate": 9.992065612805081e-06,
|
217 |
+
"loss": 2.0677,
|
218 |
+
"step": 13000
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.89,
|
222 |
+
"learning_rate": 9.991734903102059e-06,
|
223 |
+
"loss": 2.0643,
|
224 |
+
"step": 13500
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.93,
|
228 |
+
"learning_rate": 9.991404193399035e-06,
|
229 |
+
"loss": 2.0609,
|
230 |
+
"step": 14000
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.93,
|
234 |
+
"eval_accuracy": 0.6438428177158628,
|
235 |
+
"eval_loss": 1.8919312953948975,
|
236 |
+
"eval_runtime": 5.6046,
|
237 |
+
"eval_samples_per_second": 713.696,
|
238 |
+
"eval_steps_per_second": 1.249,
|
239 |
+
"step": 14000
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.96,
|
243 |
+
"learning_rate": 9.991073483696012e-06,
|
244 |
+
"loss": 2.055,
|
245 |
+
"step": 14500
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 0.99,
|
249 |
+
"learning_rate": 9.99074277399299e-06,
|
250 |
+
"loss": 2.052,
|
251 |
+
"step": 15000
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 1.03,
|
255 |
+
"learning_rate": 9.990412725709374e-06,
|
256 |
+
"loss": 2.0516,
|
257 |
+
"step": 15500
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 1.06,
|
261 |
+
"learning_rate": 9.990082016006351e-06,
|
262 |
+
"loss": 2.0461,
|
263 |
+
"step": 16000
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 1.06,
|
267 |
+
"eval_accuracy": 0.6411957950065703,
|
268 |
+
"eval_loss": 1.8524950742721558,
|
269 |
+
"eval_runtime": 4.1951,
|
270 |
+
"eval_samples_per_second": 953.502,
|
271 |
+
"eval_steps_per_second": 1.669,
|
272 |
+
"step": 16000
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 1.09,
|
276 |
+
"learning_rate": 9.989751306303327e-06,
|
277 |
+
"loss": 2.0429,
|
278 |
+
"step": 16500
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 1.12,
|
282 |
+
"learning_rate": 9.989420596600305e-06,
|
283 |
+
"loss": 2.0391,
|
284 |
+
"step": 17000
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 1.16,
|
288 |
+
"learning_rate": 9.989089886897281e-06,
|
289 |
+
"loss": 2.0364,
|
290 |
+
"step": 17500
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 1.19,
|
294 |
+
"learning_rate": 9.988759177194259e-06,
|
295 |
+
"loss": 2.0347,
|
296 |
+
"step": 18000
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 1.19,
|
300 |
+
"eval_accuracy": 0.646603611349957,
|
301 |
+
"eval_loss": 1.842495322227478,
|
302 |
+
"eval_runtime": 4.1943,
|
303 |
+
"eval_samples_per_second": 953.666,
|
304 |
+
"eval_steps_per_second": 1.669,
|
305 |
+
"step": 18000
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 1.22,
|
309 |
+
"learning_rate": 9.988428467491237e-06,
|
310 |
+
"loss": 2.0311,
|
311 |
+
"step": 18500
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 1.26,
|
315 |
+
"learning_rate": 9.98809841920762e-06,
|
316 |
+
"loss": 2.0298,
|
317 |
+
"step": 19000
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 1.29,
|
321 |
+
"learning_rate": 9.987767709504598e-06,
|
322 |
+
"loss": 2.0263,
|
323 |
+
"step": 19500
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 1.32,
|
327 |
+
"learning_rate": 9.987436999801576e-06,
|
328 |
+
"loss": 2.0227,
|
329 |
+
"step": 20000
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 1.32,
|
333 |
+
"eval_accuracy": 0.6428384906645777,
|
334 |
+
"eval_loss": 1.8519748449325562,
|
335 |
+
"eval_runtime": 4.4809,
|
336 |
+
"eval_samples_per_second": 892.668,
|
337 |
+
"eval_steps_per_second": 1.562,
|
338 |
+
"step": 20000
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 1.36,
|
342 |
+
"learning_rate": 9.987106290098553e-06,
|
343 |
+
"loss": 2.0213,
|
344 |
+
"step": 20500
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 1.39,
|
348 |
+
"learning_rate": 9.98677558039553e-06,
|
349 |
+
"loss": 2.0202,
|
350 |
+
"step": 21000
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 1.42,
|
354 |
+
"learning_rate": 9.986444870692507e-06,
|
355 |
+
"loss": 2.0176,
|
356 |
+
"step": 21500
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 1.46,
|
360 |
+
"learning_rate": 9.986114160989483e-06,
|
361 |
+
"loss": 2.0156,
|
362 |
+
"step": 22000
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 1.46,
|
366 |
+
"eval_accuracy": 0.6465079984393289,
|
367 |
+
"eval_loss": 1.838840126991272,
|
368 |
+
"eval_runtime": 5.6638,
|
369 |
+
"eval_samples_per_second": 706.234,
|
370 |
+
"eval_steps_per_second": 1.236,
|
371 |
+
"step": 22000
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 1.49,
|
375 |
+
"learning_rate": 9.985783451286461e-06,
|
376 |
+
"loss": 2.0135,
|
377 |
+
"step": 22500
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 1.52,
|
381 |
+
"learning_rate": 9.985452741583439e-06,
|
382 |
+
"loss": 2.0108,
|
383 |
+
"step": 23000
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 1.55,
|
387 |
+
"learning_rate": 9.985122031880417e-06,
|
388 |
+
"loss": 2.0083,
|
389 |
+
"step": 23500
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 1.59,
|
393 |
+
"learning_rate": 9.984792645016205e-06,
|
394 |
+
"loss": 2.0061,
|
395 |
+
"step": 24000
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 1.59,
|
399 |
+
"eval_accuracy": 0.6455588887439676,
|
400 |
+
"eval_loss": 1.8356744050979614,
|
401 |
+
"eval_runtime": 4.1905,
|
402 |
+
"eval_samples_per_second": 954.546,
|
403 |
+
"eval_steps_per_second": 1.67,
|
404 |
+
"step": 24000
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 1.62,
|
408 |
+
"learning_rate": 9.984461935313183e-06,
|
409 |
+
"loss": 2.0035,
|
410 |
+
"step": 24500
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 1.65,
|
414 |
+
"learning_rate": 9.98413122561016e-06,
|
415 |
+
"loss": 2.0021,
|
416 |
+
"step": 25000
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 1.69,
|
420 |
+
"learning_rate": 9.983800515907137e-06,
|
421 |
+
"loss": 2.001,
|
422 |
+
"step": 25500
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.72,
|
426 |
+
"learning_rate": 9.983469806204115e-06,
|
427 |
+
"loss": 1.9985,
|
428 |
+
"step": 26000
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 1.72,
|
432 |
+
"eval_accuracy": 0.6489613463055482,
|
433 |
+
"eval_loss": 1.7983965873718262,
|
434 |
+
"eval_runtime": 4.2683,
|
435 |
+
"eval_samples_per_second": 937.141,
|
436 |
+
"eval_steps_per_second": 1.64,
|
437 |
+
"step": 26000
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 1.75,
|
441 |
+
"learning_rate": 9.983139096501093e-06,
|
442 |
+
"loss": 1.9962,
|
443 |
+
"step": 26500
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 1.79,
|
447 |
+
"learning_rate": 9.98280838679807e-06,
|
448 |
+
"loss": 1.9948,
|
449 |
+
"step": 27000
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 1.82,
|
453 |
+
"learning_rate": 9.982477677095046e-06,
|
454 |
+
"loss": 1.9947,
|
455 |
+
"step": 27500
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 1.85,
|
459 |
+
"learning_rate": 9.982146967392024e-06,
|
460 |
+
"loss": 1.9909,
|
461 |
+
"step": 28000
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 1.85,
|
465 |
+
"eval_accuracy": 0.6503962176200306,
|
466 |
+
"eval_loss": 1.7985965013504028,
|
467 |
+
"eval_runtime": 4.4068,
|
468 |
+
"eval_samples_per_second": 907.681,
|
469 |
+
"eval_steps_per_second": 1.588,
|
470 |
+
"step": 28000
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 1.88,
|
474 |
+
"learning_rate": 9.981816919108407e-06,
|
475 |
+
"loss": 1.9888,
|
476 |
+
"step": 28500
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 1.92,
|
480 |
+
"learning_rate": 9.98148687082479e-06,
|
481 |
+
"loss": 1.9877,
|
482 |
+
"step": 29000
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 1.95,
|
486 |
+
"learning_rate": 9.981156161121769e-06,
|
487 |
+
"loss": 1.9862,
|
488 |
+
"step": 29500
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 1.98,
|
492 |
+
"learning_rate": 9.980825451418745e-06,
|
493 |
+
"loss": 1.9856,
|
494 |
+
"step": 30000
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 1.98,
|
498 |
+
"eval_accuracy": 0.647755693036725,
|
499 |
+
"eval_loss": 1.8175112009048462,
|
500 |
+
"eval_runtime": 5.8254,
|
501 |
+
"eval_samples_per_second": 686.652,
|
502 |
+
"eval_steps_per_second": 1.202,
|
503 |
+
"step": 30000
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 2.02,
|
507 |
+
"learning_rate": 9.980494741715722e-06,
|
508 |
+
"loss": 1.9859,
|
509 |
+
"step": 30500
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 2.05,
|
513 |
+
"learning_rate": 9.9801640320127e-06,
|
514 |
+
"loss": 1.982,
|
515 |
+
"step": 31000
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 2.08,
|
519 |
+
"learning_rate": 9.979833322309678e-06,
|
520 |
+
"loss": 1.979,
|
521 |
+
"step": 31500
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 2.12,
|
525 |
+
"learning_rate": 9.979502612606656e-06,
|
526 |
+
"loss": 1.9805,
|
527 |
+
"step": 32000
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 2.12,
|
531 |
+
"eval_accuracy": 0.6516655780535597,
|
532 |
+
"eval_loss": 1.8021340370178223,
|
533 |
+
"eval_runtime": 4.2089,
|
534 |
+
"eval_samples_per_second": 950.37,
|
535 |
+
"eval_steps_per_second": 1.663,
|
536 |
+
"step": 32000
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 2.15,
|
540 |
+
"learning_rate": 9.979171902903632e-06,
|
541 |
+
"loss": 1.9771,
|
542 |
+
"step": 32500
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 2.18,
|
546 |
+
"learning_rate": 9.978841854620015e-06,
|
547 |
+
"loss": 1.9767,
|
548 |
+
"step": 33000
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 2.22,
|
552 |
+
"learning_rate": 9.978511144916993e-06,
|
553 |
+
"loss": 1.9738,
|
554 |
+
"step": 33500
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 2.25,
|
558 |
+
"learning_rate": 9.978181096633376e-06,
|
559 |
+
"loss": 1.9732,
|
560 |
+
"step": 34000
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 2.25,
|
564 |
+
"eval_accuracy": 0.6534042413498785,
|
565 |
+
"eval_loss": 1.7741553783416748,
|
566 |
+
"eval_runtime": 5.6645,
|
567 |
+
"eval_samples_per_second": 706.155,
|
568 |
+
"eval_steps_per_second": 1.236,
|
569 |
+
"step": 34000
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 2.28,
|
573 |
+
"learning_rate": 9.977850386930354e-06,
|
574 |
+
"loss": 1.9711,
|
575 |
+
"step": 34500
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 2.31,
|
579 |
+
"learning_rate": 9.977519677227332e-06,
|
580 |
+
"loss": 1.9697,
|
581 |
+
"step": 35000
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"epoch": 2.35,
|
585 |
+
"learning_rate": 9.977188967524308e-06,
|
586 |
+
"loss": 1.969,
|
587 |
+
"step": 35500
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 2.38,
|
591 |
+
"learning_rate": 9.976858257821285e-06,
|
592 |
+
"loss": 1.968,
|
593 |
+
"step": 36000
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 2.38,
|
597 |
+
"eval_accuracy": 0.6549699887870193,
|
598 |
+
"eval_loss": 1.7642747163772583,
|
599 |
+
"eval_runtime": 5.7171,
|
600 |
+
"eval_samples_per_second": 699.657,
|
601 |
+
"eval_steps_per_second": 1.224,
|
602 |
+
"step": 36000
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 2.41,
|
606 |
+
"learning_rate": 9.976527548118262e-06,
|
607 |
+
"loss": 1.9671,
|
608 |
+
"step": 36500
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 2.45,
|
612 |
+
"learning_rate": 9.97619683841524e-06,
|
613 |
+
"loss": 1.9664,
|
614 |
+
"step": 37000
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 2.48,
|
618 |
+
"learning_rate": 9.975866128712217e-06,
|
619 |
+
"loss": 1.9634,
|
620 |
+
"step": 37500
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 2.51,
|
624 |
+
"learning_rate": 9.975535419009195e-06,
|
625 |
+
"loss": 1.9618,
|
626 |
+
"step": 38000
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 2.51,
|
630 |
+
"eval_accuracy": 0.6490381480273884,
|
631 |
+
"eval_loss": 1.8036186695098877,
|
632 |
+
"eval_runtime": 4.2126,
|
633 |
+
"eval_samples_per_second": 949.526,
|
634 |
+
"eval_steps_per_second": 1.662,
|
635 |
+
"step": 38000
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 2.55,
|
639 |
+
"learning_rate": 9.975205370725578e-06,
|
640 |
+
"loss": 1.9605,
|
641 |
+
"step": 38500
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 2.58,
|
645 |
+
"learning_rate": 9.974874661022556e-06,
|
646 |
+
"loss": 1.9593,
|
647 |
+
"step": 39000
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 2.61,
|
651 |
+
"learning_rate": 9.974543951319534e-06,
|
652 |
+
"loss": 1.9598,
|
653 |
+
"step": 39500
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 2.65,
|
657 |
+
"learning_rate": 9.97421324161651e-06,
|
658 |
+
"loss": 1.9582,
|
659 |
+
"step": 40000
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"epoch": 2.65,
|
663 |
+
"eval_accuracy": 0.6469189617594611,
|
664 |
+
"eval_loss": 1.80427885055542,
|
665 |
+
"eval_runtime": 4.2765,
|
666 |
+
"eval_samples_per_second": 935.338,
|
667 |
+
"eval_steps_per_second": 1.637,
|
668 |
+
"step": 40000
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 2.68,
|
672 |
+
"learning_rate": 9.973883193332893e-06,
|
673 |
+
"loss": 1.9555,
|
674 |
+
"step": 40500
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 2.71,
|
678 |
+
"learning_rate": 9.973552483629871e-06,
|
679 |
+
"loss": 1.9546,
|
680 |
+
"step": 41000
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 2.74,
|
684 |
+
"learning_rate": 9.973221773926847e-06,
|
685 |
+
"loss": 1.9543,
|
686 |
+
"step": 41500
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 2.78,
|
690 |
+
"learning_rate": 9.972891064223825e-06,
|
691 |
+
"loss": 1.9533,
|
692 |
+
"step": 42000
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 2.78,
|
696 |
+
"eval_accuracy": 0.6523191823899371,
|
697 |
+
"eval_loss": 1.8008100986480713,
|
698 |
+
"eval_runtime": 4.4543,
|
699 |
+
"eval_samples_per_second": 898.013,
|
700 |
+
"eval_steps_per_second": 1.572,
|
701 |
+
"step": 42000
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"epoch": 2.81,
|
705 |
+
"learning_rate": 9.972560354520802e-06,
|
706 |
+
"loss": 1.9528,
|
707 |
+
"step": 42500
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"epoch": 2.84,
|
711 |
+
"learning_rate": 9.972230306237186e-06,
|
712 |
+
"loss": 1.9514,
|
713 |
+
"step": 43000
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 2.88,
|
717 |
+
"learning_rate": 9.971900257953569e-06,
|
718 |
+
"loss": 1.9504,
|
719 |
+
"step": 43500
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 2.91,
|
723 |
+
"learning_rate": 9.971569548250547e-06,
|
724 |
+
"loss": 1.9472,
|
725 |
+
"step": 44000
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 2.91,
|
729 |
+
"eval_accuracy": 0.6498401704848162,
|
730 |
+
"eval_loss": 1.7917245626449585,
|
731 |
+
"eval_runtime": 4.1847,
|
732 |
+
"eval_samples_per_second": 955.859,
|
733 |
+
"eval_steps_per_second": 1.673,
|
734 |
+
"step": 44000
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 2.94,
|
738 |
+
"learning_rate": 9.971238838547523e-06,
|
739 |
+
"loss": 1.9484,
|
740 |
+
"step": 44500
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 2.98,
|
744 |
+
"learning_rate": 9.9709081288445e-06,
|
745 |
+
"loss": 1.9464,
|
746 |
+
"step": 45000
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 3.01,
|
750 |
+
"learning_rate": 9.970577419141478e-06,
|
751 |
+
"loss": 1.9474,
|
752 |
+
"step": 45500
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 3.04,
|
756 |
+
"learning_rate": 9.970246709438456e-06,
|
757 |
+
"loss": 1.9443,
|
758 |
+
"step": 46000
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 3.04,
|
762 |
+
"eval_accuracy": 0.6572224802601022,
|
763 |
+
"eval_loss": 1.7718559503555298,
|
764 |
+
"eval_runtime": 4.1961,
|
765 |
+
"eval_samples_per_second": 953.273,
|
766 |
+
"eval_steps_per_second": 1.668,
|
767 |
+
"step": 46000
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 3.08,
|
771 |
+
"learning_rate": 9.969915999735434e-06,
|
772 |
+
"loss": 1.9433,
|
773 |
+
"step": 46500
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 3.11,
|
777 |
+
"learning_rate": 9.96958529003241e-06,
|
778 |
+
"loss": 1.9424,
|
779 |
+
"step": 47000
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 3.14,
|
783 |
+
"learning_rate": 9.969254580329388e-06,
|
784 |
+
"loss": 1.9409,
|
785 |
+
"step": 47500
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 3.17,
|
789 |
+
"learning_rate": 9.968923870626364e-06,
|
790 |
+
"loss": 1.9394,
|
791 |
+
"step": 48000
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 3.17,
|
795 |
+
"eval_accuracy": 0.6642529728293364,
|
796 |
+
"eval_loss": 1.721533179283142,
|
797 |
+
"eval_runtime": 4.2728,
|
798 |
+
"eval_samples_per_second": 936.147,
|
799 |
+
"eval_steps_per_second": 1.638,
|
800 |
+
"step": 48000
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 3.21,
|
804 |
+
"learning_rate": 9.968593822342749e-06,
|
805 |
+
"loss": 1.9394,
|
806 |
+
"step": 48500
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 3.24,
|
810 |
+
"learning_rate": 9.968263112639725e-06,
|
811 |
+
"loss": 1.9388,
|
812 |
+
"step": 49000
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 3.27,
|
816 |
+
"learning_rate": 9.967932402936703e-06,
|
817 |
+
"loss": 1.9376,
|
818 |
+
"step": 49500
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 3.31,
|
822 |
+
"learning_rate": 9.96760169323368e-06,
|
823 |
+
"loss": 1.9372,
|
824 |
+
"step": 50000
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 3.31,
|
828 |
+
"eval_accuracy": 0.6554556120453656,
|
829 |
+
"eval_loss": 1.7481720447540283,
|
830 |
+
"eval_runtime": 4.2868,
|
831 |
+
"eval_samples_per_second": 933.107,
|
832 |
+
"eval_steps_per_second": 1.633,
|
833 |
+
"step": 50000
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 3.34,
|
837 |
+
"learning_rate": 9.967270983530658e-06,
|
838 |
+
"loss": 1.936,
|
839 |
+
"step": 50500
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 3.37,
|
843 |
+
"learning_rate": 9.966940273827634e-06,
|
844 |
+
"loss": 1.9339,
|
845 |
+
"step": 51000
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 3.41,
|
849 |
+
"learning_rate": 9.966609564124612e-06,
|
850 |
+
"loss": 1.9333,
|
851 |
+
"step": 51500
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 3.44,
|
855 |
+
"learning_rate": 9.966279515840995e-06,
|
856 |
+
"loss": 1.9324,
|
857 |
+
"step": 52000
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 3.44,
|
861 |
+
"eval_accuracy": 0.6522052559145423,
|
862 |
+
"eval_loss": 1.7548049688339233,
|
863 |
+
"eval_runtime": 5.7821,
|
864 |
+
"eval_samples_per_second": 691.794,
|
865 |
+
"eval_steps_per_second": 1.211,
|
866 |
+
"step": 52000
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 3.47,
|
870 |
+
"learning_rate": 9.965948806137973e-06,
|
871 |
+
"loss": 1.9317,
|
872 |
+
"step": 52500
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 3.51,
|
876 |
+
"learning_rate": 9.965618096434951e-06,
|
877 |
+
"loss": 1.9323,
|
878 |
+
"step": 53000
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 3.54,
|
882 |
+
"learning_rate": 9.965287386731927e-06,
|
883 |
+
"loss": 1.9303,
|
884 |
+
"step": 53500
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 3.57,
|
888 |
+
"learning_rate": 9.964956677028905e-06,
|
889 |
+
"loss": 1.9297,
|
890 |
+
"step": 54000
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 3.57,
|
894 |
+
"eval_accuracy": 0.6580935017580414,
|
895 |
+
"eval_loss": 1.7288295030593872,
|
896 |
+
"eval_runtime": 4.2876,
|
897 |
+
"eval_samples_per_second": 932.929,
|
898 |
+
"eval_steps_per_second": 1.633,
|
899 |
+
"step": 54000
|
900 |
+
}
|
901 |
+
],
|
902 |
+
"max_steps": 15120000,
|
903 |
+
"num_train_epochs": 1000,
|
904 |
+
"total_flos": 1.8197541890074767e+19,
|
905 |
+
"trial_name": null,
|
906 |
+
"trial_params": null
|
907 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9af316f54eb87b541f90db3947421d832747328366874c7f37f02f3b2264ec9b
|
3 |
+
size 3503
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|