File size: 2,772 Bytes
3abecf6 3683b8f 3abecf6 3683b8f 3abecf6 3683b8f f87b7fa 3683b8f f87b7fa 3683b8f f87b7fa 3683b8f 3abecf6 f87b7fa 3abecf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
datasets:
- cardiffnlp/tweet_topic_single
metrics:
- f1
- accuracy
pipeline_tag: text-classification
widget:
- text: I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but
man does their experience versus the Blue Jackets this year and last help them
a lot versus this Islanders team. Another meat grinder upcoming for the good guys
example_title: Example 1
- text: Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk.
Beautiful weather. Wishing everyone a safe Labor Day weekend in the US.
example_title: Example 2
base_model: cardiffnlp/twitter-roberta-base-dec2021
model-index:
- name: cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: cardiffnlp/tweet_topic_single
type: cardiffnlp/tweet_topic_single
split: test_2021
args: cardiffnlp/tweet_topic_single
metrics:
- type: f1
value: 0.8948611931482575
name: F1
- type: f1_macro
value: 0.800952410284692
name: F1 (macro)
- type: accuracy
value: 0.8948611931482575
name: Accuracy
---
# cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the [tweet_topic_single](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single). This model is fine-tuned on `train_all` split and validated on `test_2021` split of tweet_topic.
Fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single/blob/main/lm_finetuning.py). It achieves the following results on the test_2021 set:
- F1 (micro): 0.8948611931482575
- F1 (macro): 0.800952410284692
- Accuracy: 0.8948611931482575
### Usage
```python
from transformers import pipeline
pipe = pipeline("text-classification", "cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all")
topic = pipe("Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US.")
print(topic)
```
### Reference
```
@inproceedings{dimosthenis-etal-2022-twitter,
title = "{T}witter {T}opic {C}lassification",
author = "Antypas, Dimosthenis and
Ushio, Asahi and
Camacho-Collados, Jose and
Neves, Leonardo and
Silva, Vitor and
Barbieri, Francesco",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics"
}
```
|