Cardiff NLP
commited on
Commit
•
144d6a3
1
Parent(s):
5ecb7c0
Adding model card
Browse files
README.md
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Twitter December 2021 (RoBERTa-base, 124M)
|
2 |
+
|
3 |
+
This is a RoBERTa-base model trained on 123.86M tweets until the end of December 2021.
|
4 |
+
More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/pdf/TBD.pdf).
|
5 |
+
|
6 |
+
Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms).
|
7 |
+
|
8 |
+
For other models trained until different periods, check [https://huggingface.co/cardiffnlp](https://huggingface.co/cardiffnlp).
|
9 |
+
|
10 |
+
## Preprocess Text
|
11 |
+
Replace usernames and links for placeholders: "@user" and "http".
|
12 |
+
If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data).
|
13 |
+
```python
|
14 |
+
def preprocess(text):
|
15 |
+
new_text = []
|
16 |
+
for t in text.split(" "):
|
17 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
18 |
+
t = 'http' if t.startswith('http') else t
|
19 |
+
new_text.append(t)
|
20 |
+
return " ".join(new_text)
|
21 |
+
```
|
22 |
+
|
23 |
+
## Example Masked Language Model
|
24 |
+
|
25 |
+
```python
|
26 |
+
from transformers import pipeline, AutoTokenizer
|
27 |
+
|
28 |
+
MODEL = "cardiffnlp/twitter-roberta-base-dec2021"
|
29 |
+
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
31 |
+
|
32 |
+
def print_candidates():
|
33 |
+
for i in range(5):
|
34 |
+
token = tokenizer.decode(candidates[i]['token'])
|
35 |
+
score = candidates[i]['score']
|
36 |
+
print("%d) %.5f %s" % (i+1, score, token))
|
37 |
+
|
38 |
+
texts = [
|
39 |
+
"So glad I'm <mask> vaccinated.",
|
40 |
+
"I keep forgetting to bring a <mask>.",
|
41 |
+
"Looking forward to watching <mask> Game tonight!",
|
42 |
+
]
|
43 |
+
for text in texts:
|
44 |
+
t = preprocess(text)
|
45 |
+
print(f"{'-'*30}\n{t}")
|
46 |
+
candidates = fill_mask(t)
|
47 |
+
print_candidates()
|
48 |
+
```
|
49 |
+
|
50 |
+
Output:
|
51 |
+
|
52 |
+
```
|
53 |
+
------------------------------
|
54 |
+
So glad I'm <mask> vaccinated.
|
55 |
+
1) 0.33211 fully
|
56 |
+
2) 0.26205 not
|
57 |
+
3) 0.22305 getting
|
58 |
+
4) 0.03790 still
|
59 |
+
5) 0.01817 all
|
60 |
+
------------------------------
|
61 |
+
I keep forgetting to bring a <mask>.
|
62 |
+
1) 0.04808 mask
|
63 |
+
2) 0.04628 book
|
64 |
+
3) 0.03597 lighter
|
65 |
+
4) 0.03391 pen
|
66 |
+
5) 0.02982 knife
|
67 |
+
------------------------------
|
68 |
+
Looking forward to watching <mask> Game tonight!
|
69 |
+
1) 0.34191 Squid
|
70 |
+
2) 0.23768 the
|
71 |
+
3) 0.15699 The
|
72 |
+
4) 0.02766 End
|
73 |
+
5) 0.01233 this
|
74 |
+
```
|
75 |
+
|
76 |
+
## Example Tweet Embeddings
|
77 |
+
```python
|
78 |
+
from transformers import AutoTokenizer, AutoModel, TFAutoModel
|
79 |
+
import numpy as np
|
80 |
+
from scipy.spatial.distance import cosine
|
81 |
+
from collections import Counter
|
82 |
+
|
83 |
+
def get_embedding(text):
|
84 |
+
text = preprocess(text)
|
85 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
86 |
+
features = model(**encoded_input)
|
87 |
+
features = features[0].detach().cpu().numpy()
|
88 |
+
features_mean = np.mean(features[0], axis=0)
|
89 |
+
return features_mean
|
90 |
+
|
91 |
+
|
92 |
+
MODEL = "cardiffnlp/twitter-roberta-base-dec2021"
|
93 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
94 |
+
model = AutoModel.from_pretrained(MODEL)
|
95 |
+
|
96 |
+
query = "The book was awesome"
|
97 |
+
tweets = ["I just ordered fried chicken 🐣",
|
98 |
+
"The movie was great",
|
99 |
+
"What time is the next game?",
|
100 |
+
"Just finished reading 'Embeddings in NLP'"]
|
101 |
+
|
102 |
+
sims = Counter()
|
103 |
+
for tweet in tweets:
|
104 |
+
sim = 1 - cosine(get_embedding(query), get_embedding(tweet))
|
105 |
+
sims[tweet] = sim
|
106 |
+
|
107 |
+
print('Most similar to: ', query)
|
108 |
+
print(f"{'-'*30}")
|
109 |
+
for idx, (tweet, sim) in enumerate(sims.most_common()):
|
110 |
+
print("%d) %.5f %s" % (idx+1, sim, tweet))
|
111 |
+
```
|
112 |
+
Output:
|
113 |
+
|
114 |
+
```
|
115 |
+
Most similar to: The book was awesome
|
116 |
+
------------------------------
|
117 |
+
1) 0.99004 The movie was great
|
118 |
+
2) 0.96320 Just finished reading 'Embeddings in NLP'
|
119 |
+
3) 0.95858 I just ordered fried chicken 🐣
|
120 |
+
4) 0.95356 What time is the next game?
|
121 |
+
```
|
122 |
+
|
123 |
+
## Example Feature Extraction
|
124 |
+
|
125 |
+
```python
|
126 |
+
from transformers import AutoTokenizer, AutoModel, TFAutoModel
|
127 |
+
import numpy as np
|
128 |
+
|
129 |
+
MODEL = "cardiffnlp/twitter-roberta-base-dec2021"
|
130 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
131 |
+
|
132 |
+
text = "Good night 😊"
|
133 |
+
text = preprocess(text)
|
134 |
+
|
135 |
+
# Pytorch
|
136 |
+
model = AutoModel.from_pretrained(MODEL)
|
137 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
138 |
+
features = model(**encoded_input)
|
139 |
+
features = features[0].detach().cpu().numpy()
|
140 |
+
features_mean = np.mean(features[0], axis=0)
|
141 |
+
#features_max = np.max(features[0], axis=0)
|
142 |
+
|
143 |
+
# # Tensorflow
|
144 |
+
# model = TFAutoModel.from_pretrained(MODEL)
|
145 |
+
# encoded_input = tokenizer(text, return_tensors='tf')
|
146 |
+
# features = model(encoded_input)
|
147 |
+
# features = features[0].numpy()
|
148 |
+
# features_mean = np.mean(features[0], axis=0)
|
149 |
+
# #features_max = np.max(features[0], axis=0)
|
150 |
+
```
|