--- language: - en license: mit datasets: - cardiffnlp/super_tweeteval pipeline_tag: text-classification inference: parameters: return_all_scores: True widget: - text: >- I’m tired of being sick.. it’s been four days dawg --- # cardiffnlp/twitter-roberta-base-emoji-latest This is a RoBERTa-base model trained on 154M tweets until the end of December 2022 and finetuned for emoji classification (multiclass classification on 100 emojis) on the _TweetEmoji100_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval). The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m). ## Example ```python from transformers import pipeline text= "I’m tired of being sick.. it’s been four days dawg" pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-base-emoji-latest", return_all_scores=True)) predictions = pipe(text)[0] predictions = sorted(predictions, key=lambda d: d['score'], reverse=True) predictions[:5] >> [{'label': 'πŸ˜’', 'score': 0.14303581416606903}, {'label': '😩', 'score': 0.07775110006332397}, {'label': '😀', 'score': 0.0710175409913063}, {'label': 'πŸ˜‘', 'score': 0.06665993481874466}, {'label': '😫', 'score': 0.0662984848022461}] ``` ## Citation Information Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model. ```bibtex @inproceedings{antypas2023supertweeteval, title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research}, author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados}, booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023}, year={2023} } ```