File size: 3,305 Bytes
5a95f14
 
 
 
 
 
0aa812a
242ad41
c570fcb
2f20f90
df3f121
 
 
242ad41
 
 
 
 
 
 
 
 
 
 
 
0aa812a
 
df3f121
 
0aa812a
 
 
 
 
 
242ad41
 
 
 
 
 
 
 
 
 
 
 
 
 
ac4be24
 
242ad41
 
 
 
 
e73704e
0aa812a
242ad41
 
 
 
 
 
 
 
 
73d5666
242ad41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e73704e
 
c570fcb
 
 
3bf8f11
 
 
 
 
 
c570fcb
3bf8f11
c570fcb
3bf8f11
 
 
 
 
 
 
 
 
c570fcb
5a95f14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
datasets:
- tweet_eval
language:
- en
---
# Twitter-roBERTa-base for Irony Detection

This is a roBERTa-base model trained on ~58M tweets and finetuned for irony detection with the TweetEval benchmark. 
This model has integrated into the [TweetNLP Python library](https://github.com/cardiffnlp/tweetnlp/).

- Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). 
- Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval).

## Example of classification

```python
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
import numpy as np
from scipy.special import softmax
import csv
import urllib.request

# Preprocess text (username and link placeholders)
def preprocess(text):
    new_text = [
    ]
    for t in text.split(" "):
        t = '@user' if t.startswith('@') and len(t) > 1 else t
        t = 'http' if t.startswith('http') else t
        new_text.append(t)
    return " ".join(new_text)

# Tasks:
# emoji, emotion, hate, irony, offensive, sentiment
# stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary

task='irony'
MODEL = f"cardiffnlp/twitter-roberta-base-{task}"

tokenizer = AutoTokenizer.from_pretrained(MODEL)

# download label mapping
labels=[]
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt"
with urllib.request.urlopen(mapping_link) as f:
    html = f.read().decode('utf-8').split("\n")
    csvreader = csv.reader(html, delimiter='\t')
labels = [row[1] for row in csvreader if len(row) > 1]

# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
model.save_pretrained(MODEL)

text = "Great, it broke the first day..."
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)

# # TF
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
# model.save_pretrained(MODEL)

# text = "Great, it broke the first day..."
# encoded_input = tokenizer(text, return_tensors='tf')
# output = model(encoded_input)
# scores = output[0][0].numpy()
# scores = softmax(scores)

ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
    l = labels[ranking[i]]
    s = scores[ranking[i]]
    print(f"{i+1}) {l} {np.round(float(s), 4)}")

```

Output: 

```
1) irony 0.914
2) non_irony 0.086
```

### Reference

Please cite the [reference paper](https://aclanthology.org/2020.findings-emnlp.148/) if you use this model.

```bibtex
@inproceedings{barbieri-etal-2020-tweeteval,
    title = "{T}weet{E}val: Unified Benchmark and Comparative Evaluation for Tweet Classification",
    author = "Barbieri, Francesco  and
      Camacho-Collados, Jose  and
      Espinosa Anke, Luis  and
      Neves, Leonardo",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.findings-emnlp.148",
    doi = "10.18653/v1/2020.findings-emnlp.148",
    pages = "1644--1650"
}
```