|
--- |
|
language: |
|
- en |
|
license: mit |
|
datasets: |
|
- cardiffnlp/super_tweeteval |
|
pipeline_tag: token-classification |
|
--- |
|
# cardiffnlp/twitter-roberta-base-ner7-latest |
|
|
|
This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for topic Name Entity Recognition on the _TweetNER7_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval). |
|
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m). |
|
|
|
## Labels |
|
<code> |
|
"id2label": { |
|
"0": "B-corporation", |
|
"1": "B-creative_work", |
|
"2": "B-event", |
|
"3": "B-group", |
|
"4": "B-location", |
|
"5": "B-person", |
|
"6": "B-product", |
|
"7": "I-corporation", |
|
"8": "I-creative_work", |
|
"9": "I-event", |
|
"10": "I-group", |
|
"11": "I-location", |
|
"12": "I-person", |
|
"13": "I-product", |
|
"14": "O" |
|
} |
|
</code> |
|
|
|
|
|
## Example |
|
```python |
|
from transformers import pipeline |
|
text = "Halo Infinite analysis - The only true analysis {{USERNAME}} {{USERNAME}} {{USERNAME}} {{USERNAME}} {{USERNAME}} {{URL}}" |
|
|
|
model_name = "cardiffnlp/twitter-roberta-base-ner7-latest" |
|
pipe = pipeline('ner', model=model_name, tokenizer=model_name, aggregation_strategy="simple") |
|
predictions = pipe(text) |
|
predictions |
|
>> [{'entity_group': 'creative_work', |
|
'score': 0.5278398, |
|
'word': 'Halo Infinite', |
|
'start': 0, |
|
'end': 13}] |
|
``` |
|
|
|
## Citation Information |
|
|
|
Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model. |
|
|
|
```bibtex |
|
@inproceedings{antypas2023supertweeteval, |
|
title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research}, |
|
author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados}, |
|
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023}, |
|
year={2023} |
|
} |
|
``` |