File size: 4,768 Bytes
59a819e ac0eb96 59a819e ac0eb96 59a819e ac0eb96 59a819e 03e4b31 59a819e 03e4b31 59a819e 03e4b31 59a819e ac0eb96 59a819e 03e4b31 59a819e ac0eb96 59a819e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
---
language: en
tags:
- timelms
- twitter
license: mit
datasets:
- twitter-api
---
# Twitter September 2022 (RoBERTa-base, 169M)
This is a RoBERTa-base model trained on 168.86M tweets until the end of September 2022 (15M tweets increment).
More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829).
Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms).
For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models).
## Preprocess Text
Replace usernames and links for placeholders: "@user" and "http".
If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data).
```python
def preprocess(text):
preprocessed_text = []
for t in text.split():
if len(t) > 1:
t = '@user' if t[0] == '@' and t.count('@') == 1 else t
t = 'http' if t.startswith('http') else t
preprocessed_text.append(t)
return ' '.join(preprocessed_text)
```
## Example Masked Language Model
```python
from transformers import pipeline, AutoTokenizer
MODEL = "cardiffnlp/twitter-roberta-base-sep2022"
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
tokenizer = AutoTokenizer.from_pretrained(MODEL)
def pprint(candidates, n):
for i in range(n):
token = tokenizer.decode(candidates[i]['token'])
score = candidates[i]['score']
print("%d) %.5f %s" % (i+1, score, token))
texts = [
"So glad I'm <mask> vaccinated.",
"I keep forgetting to bring a <mask>.",
"Looking forward to watching <mask> Game tonight!",
]
for text in texts:
t = preprocess(text)
print(f"{'-'*30}\n{t}")
candidates = fill_mask(t)
pprint(candidates, 5)
```
Output:
```
------------------------------
So glad I'm <mask> vaccinated.
1) 0.60140 not
2) 0.15077 getting
3) 0.12119 fully
4) 0.02203 still
5) 0.01020 all
------------------------------
I keep forgetting to bring a <mask>.
1) 0.05812 charger
2) 0.05040 backpack
3) 0.05004 book
4) 0.04548 bag
5) 0.03992 lighter
------------------------------
Looking forward to watching <mask> Game tonight!
1) 0.39552 the
2) 0.28083 The
3) 0.02029 End
4) 0.01878 Squid
5) 0.01438 this
```
## Example Tweet Embeddings
```python
from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
from scipy.spatial.distance import cosine
from collections import Counter
def get_embedding(text): # naive approach for demonstration
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy()
return np.mean(features[0], axis=0)
MODEL = "cardiffnlp/twitter-roberta-base-sep2022"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModel.from_pretrained(MODEL)
query = "The book was awesome"
tweets = ["I just ordered fried chicken 🐣",
"The movie was great",
"What time is the next game?",
"Just finished reading 'Embeddings in NLP'"]
sims = Counter()
for tweet in tweets:
sim = 1 - cosine(get_embedding(query), get_embedding(tweet))
sims[tweet] = sim
print('Most similar to: ', query)
print(f"{'-'*30}")
for idx, (tweet, sim) in enumerate(sims.most_common()):
print("%d) %.5f %s" % (idx+1, sim, tweet))
```
Output:
```
Most similar to: The book was awesome
------------------------------
1) 0.98914 The movie was great
2) 0.96194 Just finished reading 'Embeddings in NLP'
3) 0.94603 What time is the next game?
4) 0.94580 I just ordered fried chicken 🐣
```
## Example Feature Extraction
```python
from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
MODEL = "cardiffnlp/twitter-roberta-base-sep2022"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
text = "Good night 😊"
text = preprocess(text)
# Pytorch
model = AutoModel.from_pretrained(MODEL)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy()
features_mean = np.mean(features[0], axis=0)
#features_max = np.max(features[0], axis=0)
# # Tensorflow
# model = TFAutoModel.from_pretrained(MODEL)
# encoded_input = tokenizer(text, return_tensors='tf')
# features = model(encoded_input)
# features = features[0].numpy()
# features_mean = np.mean(features[0], axis=0)
# #features_max = np.max(features[0], axis=0)
``` |