File size: 2,170 Bytes
0c44cfd
c77a2b5
 
0c44cfd
 
 
 
 
8fac94f
0c44cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fac94f
0c44cfd
 
 
d7b2570
0c44cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
language:
- en
license: mit
datasets:
- cardiffnlp/super_tweeteval
pipeline_tag: text-classification
---
# cardiffnlp/twitter-roberta-large-topic-latest

This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for topic classification (multilabel classification) on the _TweetTopic_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval).
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m).

## Labels
<code>
    "id2label": {
    "0": "arts_&_culture",
    "1": "business_&_entrepreneurs",
    "2": "celebrity_&_pop_culture",
    "3": "diaries_&_daily_life",
    "4": "family",
    "5": "fashion_&_style",
    "6": "film_tv_&_video",
    "7": "fitness_&_health",
    "8": "food_&_dining",
    "9": "gaming",
    "10": "learning_&_educational",
    "11": "music",
    "12": "news_&_social_concern",
    "13": "other_hobbies",
    "14": "relationships",
    "15": "science_&_technology",
    "16": "sports",
    "17": "travel_&_adventure",
    "18": "youth_&_student_life"
  }
</code>


## Example
```python
from transformers import pipeline
text = "So @AB is just the latest victim of the madden curse. If you’re on the cover of that game your career will take a turn for the worse"

pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-large-topic-latest", return_all_scores=True)
predictions = pipe(text)[0]
predictions = [x for x in predictions if x['score'] > 0.5]
predictions
>> [{'label': 'sports', 'score': 0.99379563331604}]
```

## Citation Information

Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model.

```bibtex
@inproceedings{antypas2023supertweeteval,
  title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research},
  author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados},
  booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
  year={2023}
}
```