Edit model card

This model utilizes a newer version of Sentence Transformers. If you're having trouble using this model, please try installing the latest version of Sentence Transformers with:

pip install --upgrade --force-reinstall --no-deps git+https://github.com/UKPLab/sentence-transformers.git

carles-undergrad-thesis/indobert-mmarco-hardnegs-bm25

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('carles-undergrad-thesis/indobert-mmarco-hardnegs-bm25')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


def cls_pooling(model_output, attention_mask):
    return model_output[0][:,0]


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('carles-undergrad-thesis/indobert-mmarco-hardnegs-bm25')
model = AutoModel.from_pretrained('carles-undergrad-thesis/indobert-mmarco-hardnegs-bm25')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

Model Mmarco Dev MrTyDi Test Miracal Test
MRR@10 R@1000 MRR@10 R@1000 NCDG@10 R@1K
$\text{BM25 (Elastic Search)}$ .114 .642 .279 .858 .391 .971
$\text{IndoBERT}_{\text{DOTHardnegs}}$ .232 .847 .471 .921 .397 .898

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 15593 with parameters:

{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 1, 'similarity_fct': 'dot_score'}

Parameters of the fit()-Method:

{
    "epochs": 5,
    "evaluation_steps": 10000,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "correct_bias": false,
        "eps": 1e-06,
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 10000,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 250, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)

Citing & Authors

Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.