carted-ml commited on
Commit
6c01cfa
·
1 Parent(s): a92ef25

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ - f1
7
+ model-index:
8
+ - name: categorization-finetuned-20220721-164940-pruned-20220803-184651
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # categorization-finetuned-20220721-164940-pruned-20220803-184651
16
+
17
+ This model is a fine-tuned version of [carted-nlp/categorization-finetuned-20220721-164940](https://huggingface.co/carted-nlp/categorization-finetuned-20220721-164940) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4673
20
+ - Accuracy: 0.8760
21
+ - F1: 0.8751
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 7e-06
41
+ - train_batch_size: 48
42
+ - eval_batch_size: 48
43
+ - seed: 314
44
+ - gradient_accumulation_steps: 6
45
+ - total_train_batch_size: 288
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: cosine
48
+ - lr_scheduler_warmup_steps: 1000
49
+ - num_epochs: 15
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
54
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
55
+ | 0.3404 | 0.51 | 2000 | 0.4329 | 0.8872 | 0.8865 |
56
+ | 0.3433 | 1.01 | 4000 | 0.4280 | 0.8883 | 0.8876 |
57
+ | 0.3281 | 1.52 | 6000 | 0.4302 | 0.8890 | 0.8883 |
58
+ | 0.331 | 2.02 | 8000 | 0.4265 | 0.8891 | 0.8885 |
59
+ | 0.3224 | 2.53 | 10000 | 0.4300 | 0.8881 | 0.8874 |
60
+ | 0.3361 | 3.04 | 12000 | 0.4291 | 0.8889 | 0.8882 |
61
+ | 0.3323 | 3.54 | 14000 | 0.4337 | 0.8878 | 0.8871 |
62
+ | 0.3556 | 4.05 | 16000 | 0.4345 | 0.8857 | 0.8851 |
63
+ | 0.3663 | 4.56 | 18000 | 0.4417 | 0.8836 | 0.8828 |
64
+ | 0.3902 | 5.06 | 20000 | 0.4555 | 0.8789 | 0.8781 |
65
+ | 0.4036 | 5.57 | 22000 | 0.4556 | 0.8788 | 0.8779 |
66
+ | 0.4305 | 6.07 | 24000 | 0.4697 | 0.8751 | 0.8742 |
67
+ | 0.4501 | 6.58 | 26000 | 0.4763 | 0.8738 | 0.8725 |
68
+ | 0.4733 | 7.09 | 28000 | 0.4857 | 0.8710 | 0.8700 |
69
+ | 0.4851 | 7.59 | 30000 | 0.4863 | 0.8705 | 0.8695 |
70
+ | 0.4846 | 8.1 | 32000 | 0.4849 | 0.8708 | 0.8698 |
71
+ | 0.4856 | 8.61 | 34000 | 0.4835 | 0.8707 | 0.8695 |
72
+ | 0.4774 | 9.11 | 36000 | 0.4797 | 0.8719 | 0.8708 |
73
+ | 0.4635 | 9.62 | 38000 | 0.4776 | 0.8728 | 0.8717 |
74
+ | 0.4561 | 10.12 | 40000 | 0.4746 | 0.8739 | 0.8729 |
75
+ | 0.4475 | 10.63 | 42000 | 0.4705 | 0.8749 | 0.8740 |
76
+ | 0.4413 | 11.14 | 44000 | 0.4691 | 0.8754 | 0.8744 |
77
+ | 0.4389 | 11.64 | 46000 | 0.4679 | 0.8760 | 0.8750 |
78
+ | 0.4361 | 12.15 | 48000 | 0.4677 | 0.8759 | 0.8749 |
79
+ | 0.4362 | 12.65 | 50000 | 0.4672 | 0.8763 | 0.8753 |
80
+ | 0.4309 | 13.16 | 52000 | 0.4671 | 0.8761 | 0.8751 |
81
+ | 0.4316 | 13.67 | 54000 | 0.4670 | 0.8764 | 0.8754 |
82
+ | 0.4321 | 14.17 | 56000 | 0.4668 | 0.8764 | 0.8755 |
83
+ | 0.4311 | 14.68 | 58000 | 0.4668 | 0.8764 | 0.8754 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.18.0.dev0
89
+ - Pytorch 1.9.1+cu111
90
+ - Datasets 2.3.2
91
+ - Tokenizers 0.11.6