cartesinus commited on
Commit
b7ff3b8
1 Parent(s): 6765ef4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -2
README.md CHANGED
@@ -10,6 +10,10 @@ metrics:
10
  model-index:
11
  - name: fedcsis-slot_baseline-xlm_r-pl
12
  results: []
 
 
 
 
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -17,7 +21,15 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  # fedcsis-slot_baseline-xlm_r-pl
19
 
20
- This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
 
 
 
 
 
 
 
 
21
  It achieves the following results on the evaluation set:
22
  - Loss: 0.1009
23
  - Precision: 0.9579
@@ -65,10 +77,92 @@ The following hyperparameters were used during training:
65
  | 0.0168 | 9.0 | 7182 | 0.1009 | 0.9577 | 0.9516 | 0.9546 | 0.9861 |
66
  | 0.016 | 10.0 | 7980 | 0.1009 | 0.9579 | 0.9512 | 0.9546 | 0.9860 |
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  ### Framework versions
70
 
71
  - Transformers 4.27.4
72
  - Pytorch 1.13.1+cu116
73
  - Datasets 2.11.0
74
- - Tokenizers 0.13.2
 
10
  model-index:
11
  - name: fedcsis-slot_baseline-xlm_r-pl
12
  results: []
13
+ datasets:
14
+ - cartesinus/leyzer-fedcsis
15
+ language:
16
+ - pl
17
  ---
18
 
19
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
21
 
22
  # fedcsis-slot_baseline-xlm_r-pl
23
 
24
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the
25
+ [leyzer-fedcsis](https://huggingface.co/cartesinus/leyzer-fedcsis) dataset.
26
+
27
+ Results on test set:
28
+ - Precision: 0.9621
29
+ - Recall: 0.9583
30
+ - F1: 0.9602
31
+ - Accuracy: 0.9857
32
+
33
  It achieves the following results on the evaluation set:
34
  - Loss: 0.1009
35
  - Precision: 0.9579
 
77
  | 0.0168 | 9.0 | 7182 | 0.1009 | 0.9577 | 0.9516 | 0.9546 | 0.9861 |
78
  | 0.016 | 10.0 | 7980 | 0.1009 | 0.9579 | 0.9512 | 0.9546 | 0.9860 |
79
 
80
+ ### Per slot evaluation
81
+
82
+ | slot_name | precision | recall | f1 | tc_size |
83
+ |-----------|-----------|--------|----|---------|
84
+ | album | 0.2000 | 0.3333 | 0.2500 | 9 |
85
+ | all_lang | 1.0000 | 1.0000 | 1.0000 | 5 |
86
+ | artist | 0.9341 | 0.9444 | 0.9392 | 90 |
87
+ | av_alias | 0.6667 | 0.8000 | 0.7273 | 5 |
88
+ | caption | 0.9651 | 0.9432 | 0.9540 | 88 |
89
+ | category | 0.0000 | 0.0000 | 0.0000 | 1 |
90
+ | category_a | 1.0000 | 0.9167 | 0.9565 | 12 |
91
+ | category_b | 1.0000 | 1.0000 | 1.0000 | 25 |
92
+ | channel | 0.9492 | 0.9333 | 0.9412 | 60 |
93
+ | channel_id | 0.9701 | 0.9644 | 0.9673 | 337 |
94
+ | count | 1.0000 | 0.9167 | 0.9565 | 12 |
95
+ | date | 0.9764 | 0.9841 | 0.9802 | 126 |
96
+ | date_day | 1.0000 | 0.9500 | 0.9744 | 20 |
97
+ | date_month | 0.9677 | 1.0000 | 0.9836 | 30 |
98
+ | device_name | 0.9091 | 1.0000 | 0.9524 | 10 |
99
+ | email | 1.0000 | 0.9913 | 0.9956 | 115 |
100
+ | event_name | 0.8788 | 0.9355 | 0.9063 | 31 |
101
+ | file_name | 0.9778 | 0.9778 | 0.9778 | 45 |
102
+ | file_size | 1.0000 | 1.0000 | 1.0000 | 12 |
103
+ | filename | 0.9722 | 0.9589 | 0.9655 | 73 |
104
+ | filter | 1.0000 | 1.0000 | 1.0000 | 35 |
105
+ | from | 0.9811 | 0.9123 | 0.9455 | 57 |
106
+ | hashtag | 1.0000 | 1.0000 | 1.0000 | 28 |
107
+ | img_query | 0.9707 | 0.9678 | 0.9693 | 342 |
108
+ | label | 1.0000 | 1.0000 | 1.0000 | 5 |
109
+ | location | 0.9766 | 0.9728 | 0.9747 | 257 |
110
+ | mail | 1.0000 | 1.0000 | 1.0000 | 3 |
111
+ | message | 0.9250 | 0.9487 | 0.9367 | 117 |
112
+ | mime_type | 0.9375 | 1.0000 | 0.9677 | 15 |
113
+ | name | 0.9412 | 0.9796 | 0.9600 | 49 |
114
+ | pathname | 0.8889 | 0.8889 | 0.8889 | 18 |
115
+ | percent | 1.0000 | 1.0000 | 1.0000 | 3 |
116
+ | phone_number | 0.9774 | 0.9774 | 0.9774 | 177 |
117
+ | phone_type | 1.0000 | 1.0000 | 1.0000 | 21 |
118
+ | picture_url | 0.9846 | 0.9412 | 0.9624 | 68 |
119
+ | playlist | 0.9516 | 0.9672 | 0.9593 | 122 |
120
+ | portal | 0.9869 | 0.9869 | 0.9869 | 153 |
121
+ | priority | 0.7500 | 1.0000 | 0.8571 | 6 |
122
+ | purpose | 0.0000 | 0.0000 | 0.0000 | 5 |
123
+ | query | 0.9663 | 0.9690 | 0.9677 | 355 |
124
+ | rating | 0.9630 | 0.9286 | 0.9455 | 28 |
125
+ | review_count | 1.0000 | 1.0000 | 1.0000 | 20 |
126
+ | section | 0.9730 | 0.9730 | 0.9730 | 74 |
127
+ | seek_time | 1.0000 | 1.0000 | 1.0000 | 3 |
128
+ | sender | 1.0000 | 1.0000 | 1.0000 | 6 |
129
+ | sender_address | 1.0000 | 0.9444 | 0.9714 | 18 |
130
+ | song | 0.8824 | 0.8898 | 0.8861 | 118 |
131
+ | src_lang_de | 0.9880 | 0.9762 | 0.9820 | 84 |
132
+ | src_lang_en | 0.9455 | 0.9630 | 0.9541 | 54 |
133
+ | src_lang_es | 0.9853 | 0.9306 | 0.9571 | 72 |
134
+ | src_lang_fr | 0.9733 | 0.9733 | 0.9733 | 75 |
135
+ | src_lang_it | 0.9872 | 0.9506 | 0.9686 | 81 |
136
+ | src_lang_pl | 0.9818 | 1.0000 | 0.9908 | 54 |
137
+ | status | 0.8810 | 0.9487 | 0.9136 | 39 |
138
+ | subject | 0.9636 | 0.9725 | 0.9680 | 109 |
139
+ | text_de | 0.9762 | 0.9762 | 0.9762 | 84 |
140
+ | text_en | 0.9796 | 0.9697 | 0.9746 | 99 |
141
+ | text_es | 0.8734 | 0.9583 | 0.9139 | 72 |
142
+ | text_fr | 0.9733 | 0.9733 | 0.9733 | 75 |
143
+ | text_it | 0.9872 | 0.9506 | 0.9686 | 81 |
144
+ | text_multi | 0.0000 | 0.0000 | 0.0000 | 4 |
145
+ | text_pl | 0.9310 | 1.0000 | 0.9643 | 54 |
146
+ | time | 0.9063 | 0.8788 | 0.8923 | 33 |
147
+ | to | 0.9648 | 0.9648 | 0.9648 | 199 |
148
+ | topic | 0.0000 | 0.0000 | 0.0000 | 3 |
149
+ | translator | 0.9838 | 0.9838 | 0.9838 | 185 |
150
+ | trg_lang_de | 0.9474 | 0.9730 | 0.9600 | 37 |
151
+ | trg_lang_en | 1.0000 | 0.9565 | 0.9778 | 46 |
152
+ | trg_lang_es | 0.9792 | 0.9792 | 0.9792 | 48 |
153
+ | trg_lang_fr | 0.9808 | 1.0000 | 0.9903 | 51 |
154
+ | trg_lang_general | 0.9500 | 0.9500 | 0.9500 | 20 |
155
+ | trg_lang_it | 0.9825 | 0.9492 | 0.9655 | 59 |
156
+ | trg_lang_pl | 0.9302 | 0.9756 | 0.9524 | 41 |
157
+ | txt_query | 0.9375 | 0.9146 | 0.9259 | 82 |
158
+ | username | 0.9615 | 0.8929 | 0.9259 | 28 |
159
+ | value | 0.8750 | 0.8750 | 0.8750 | 8 |
160
+ | weight | 1.0000 | 1.0000 | 1.0000 | 3 |
161
+
162
 
163
  ### Framework versions
164
 
165
  - Transformers 4.27.4
166
  - Pytorch 1.13.1+cu116
167
  - Datasets 2.11.0
168
+ - Tokenizers 0.13.2