castejon777
commited on
Commit
•
e6dc5e9
1
Parent(s):
1bf7982
1st try of training PPO in LunarLander
Browse files- README.md +37 -0
- config.json +1 -0
- lunar_agent.zip +3 -0
- lunar_agent/_stable_baselines3_version +1 -0
- lunar_agent/data +95 -0
- lunar_agent/policy.optimizer.pth +3 -0
- lunar_agent/policy.pth +3 -0
- lunar_agent/pytorch_variables.pth +3 -0
- lunar_agent/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 263.78 +/- 16.22
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f779b389310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f779b3893a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f779b389430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f779b3894c0>", "_build": "<function ActorCriticPolicy._build at 0x7f779b389550>", "forward": "<function ActorCriticPolicy.forward at 0x7f779b3895e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f779b389670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f779b389700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f779b389790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f779b389820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f779b3898b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f779b389940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f779b3857e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678044567223826610, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIZSGj6DhAC8S582u/+1FDnM22O9/gBmOgAAgD8AAIA/jYIfPmq5Sj4WDXG8Z62RvjqgAT5gcam9AAAAAAAAAABAVpy9YBi5PyYyAb8Lk3u9ojurvOvfPr4AAAAAAAAAAHOfxr0pMCy6uLwVunCIBzn7nxW67kscOQAAgD8AAIA/ZkDwvM58mj8Ae269rH4sv0lpYb33GgE9AAAAAAAAAADAgcK9H0iJPB3sEj50Mh6+fP2WPDHrvTwAAAAAAAAAAODrX77q+Zs/BWTovhBAEb9HGT2+dJVJvgAAAAAAAAAAE80QvilBEry91Q28DJWSujSibj1muXY7AACAPwAAgD+Neyq+nJ9BvFOkI7tvbyS5bPWrPeqgUDoAAIA/AACAP+bjRz08SJs/P0IMPh1kKb+rLcc8mpsiPQAAAAAAAAAA09Y3PmHJm7xjAuG6ZJktOTsTCL6XzhQ6AACAPwAAgD8tS06+XW/CPkg5WD17tsK+M14XvMN4sz0AAAAAAAAAAE0ONL4GQqs/R17IvlpmA78D1Yq+llXGvQAAAAAAAAAA8z5qPhvgmz9vDbk+5Tcsv3OiJj5LbWQ9AAAAAAAAAAAAqUE9SB+SunP6QTPcVXGucGs5uWL0q7MAAIA/AACAP818lbvXmbM/qyPLvc79AL4dYNq7dL2wvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlL2lnO8vcUCUhpRSlIwBbJRL1YwBdJRHQJ7xs32mHgx1fZQoaAZoCWgPQwh6cHfWbn9zQJSGlFKUaBVNBQFoFkdAnvLBHXmNi3V9lChoBmgJaA9DCLX7VYDvWG9AlIaUUpRoFUuraBZHQJ7zAvtdAxB1fZQoaAZoCWgPQwgnLzIBvwtnQJSGlFKUaBVN6ANoFkdAnvPRq46OpHV9lChoBmgJaA9DCFERp5NsC3FAlIaUUpRoFUupaBZHQJ73D5k9U0h1fZQoaAZoCWgPQwja5zHKM6xxQJSGlFKUaBVL82gWR0Ce+hN4qwyJdX2UKGgGaAloD0MISx5Pyw9NckCUhpRSlGgVS7BoFkdAnvr/A44p+nV9lChoBmgJaA9DCHC1TlyOoHFAlIaUUpRoFUvxaBZHQJ77NJL/S6V1fZQoaAZoCWgPQwh0CvKzkStxQJSGlFKUaBVL2WgWR0Ce+2yDqW1MdX2UKGgGaAloD0MIHXdKB2uBckCUhpRSlGgVS/RoFkdAnvzYnF5v+HV9lChoBmgJaA9DCJllTwLbQXJAlIaUUpRoFUvWaBZHQJ8AFE4Nqg11fZQoaAZoCWgPQwhxdmuZzI5wQJSGlFKUaBVLp2gWR0CfAixzJZGKdX2UKGgGaAloD0MIHsGNlO0fcECUhpRSlGgVS8JoFkdAnwOcf/3nIXV9lChoBmgJaA9DCCKrWz2njXBAlIaUUpRoFUvtaBZHQJ8EIn4O+Zh1fZQoaAZoCWgPQwgmV7H4TbNdQJSGlFKUaBVN6ANoFkdAnwch82JizHV9lChoBmgJaA9DCMeePZcpTHFAlIaUUpRoFUv0aBZHQJ8HZHz6JqJ1fZQoaAZoCWgPQwjMDYY6LOJhQJSGlFKUaBVN6ANoFkdAnwekmICU5nV9lChoBmgJaA9DCLRXHw/9mGFAlIaUUpRoFU3oA2gWR0CfCFyi22G7dX2UKGgGaAloD0MIU0Da/wC8ZUCUhpRSlGgVTegDaBZHQJ8KEkB0ZFZ1fZQoaAZoCWgPQwhklj0J7GZxQJSGlFKUaBVLrmgWR0CfCtpS75EddX2UKGgGaAloD0MIxqaVQqB/cECUhpRSlGgVS9BoFkdAnwrtsWO6unV9lChoBmgJaA9DCCrgnufPQ2NAlIaUUpRoFU3oA2gWR0CfCwqkuYhMdX2UKGgGaAloD0MIr5P6snR2cECUhpRSlGgVS8doFkdAnwwZDArQPnV9lChoBmgJaA9DCCIZcmw93G9AlIaUUpRoFUu6aBZHQJ8ONWbPQfJ1fZQoaAZoCWgPQwhbmlshrKhyQJSGlFKUaBVL0mgWR0CfDuTgl4TsdX2UKGgGaAloD0MIQZ3y6EaRcECUhpRSlGgVS8loFkdAnw8E1uR9w3V9lChoBmgJaA9DCN9rCI5LA2VAlIaUUpRoFU3oA2gWR0CfD/CsOoYOdX2UKGgGaAloD0MIdOrKZ3m9cECUhpRSlGgVS+ZoFkdAnxDHA6+36XV9lChoBmgJaA9DCDv8NVmjTnJAlIaUUpRoFUu3aBZHQJ8RmPGQ0XR1fZQoaAZoCWgPQwhauReYlXxkQJSGlFKUaBVN6ANoFkdAnxHRgAp8W3V9lChoBmgJaA9DCDVAaaiRe3BAlIaUUpRoFUvHaBZHQJ8SAALiMpB1fZQoaAZoCWgPQwgv3SQGwVNxQJSGlFKUaBVLqmgWR0CfEj60IC2ddX2UKGgGaAloD0MI0qkrn6UHckCUhpRSlGgVS/NoFkdAnxONB4Uvf3V9lChoBmgJaA9DCBqJ0Aj2uXJAlIaUUpRoFUumaBZHQJ8ULGyX2M91fZQoaAZoCWgPQwgjh4ib00hhQJSGlFKUaBVN6ANoFkdAnxWPwuuie3V9lChoBmgJaA9DCA360tuf2mVAlIaUUpRoFU3oA2gWR0CfFaTHsC1adX2UKGgGaAloD0MIzvv/OGEEcUCUhpRSlGgVS9poFkdAnxcLI1cdHXV9lChoBmgJaA9DCPsCeuHOF3BAlIaUUpRoFUvhaBZHQJ8XPdRBNVR1fZQoaAZoCWgPQwg3ABsQoR5wQJSGlFKUaBVL0mgWR0CfGAGjsUqQdX2UKGgGaAloD0MIWRMLfMU+cECUhpRSlGgVS7BoFkdAnxjJ6D5CW3V9lChoBmgJaA9DCB767lYWfmFAlIaUUpRoFU3oA2gWR0CfGNdZq20BdX2UKGgGaAloD0MIHEKVmj28TUCUhpRSlGgVS1VoFkdAnxl0ulGgBnV9lChoBmgJaA9DCI6SV+dYzHFAlIaUUpRoFUvdaBZHQJ8Zf/xUedV1fZQoaAZoCWgPQwiHwmfrIJxyQJSGlFKUaBVL52gWR0CfGtscQyyldX2UKGgGaAloD0MI6Z0KuOchcUCUhpRSlGgVS/BoFkdAnxwaur6tT3V9lChoBmgJaA9DCCKKyRtgwnBAlIaUUpRoFUvKaBZHQJ8c7GBFuvV1fZQoaAZoCWgPQwgheHx7F1lwQJSGlFKUaBVLsGgWR0CfHZfNA1NydX2UKGgGaAloD0MIqyLcZJSWcUCUhpRSlGgVTSgBaBZHQJ8eVzr/sE91fZQoaAZoCWgPQwguxysQPaxtQJSGlFKUaBVLrWgWR0CfH95nDiwTdX2UKGgGaAloD0MIqcKf4c1ibkCUhpRSlGgVS6VoFkdAnyBOOS4e93V9lChoBmgJaA9DCEhwI2XL83BAlIaUUpRoFUvLaBZHQJ8gspnYg7p1fZQoaAZoCWgPQwgE4nX9QpNxQJSGlFKUaBVLuWgWR0CfIViG34KydX2UKGgGaAloD0MIuFhRg2mXcUCUhpRSlGgVS6toFkdAnyFwccU/OnV9lChoBmgJaA9DCBTsv84NXXFAlIaUUpRoFUuMaBZHQJ8izFZPl+51fZQoaAZoCWgPQwgEyxEykF9fQJSGlFKUaBVN6ANoFkdAnySe8Gs3hnV9lChoBmgJaA9DCOaWVkPi+3BAlIaUUpRoFU0lAWgWR0CfJPOeJ53UdX2UKGgGaAloD0MIFva0w18eb0CUhpRSlGgVS8loFkdAnyasKsuFpXV9lChoBmgJaA9DCKcExCSclnBAlIaUUpRoFUu5aBZHQJ8nJBX0Xgt1fZQoaAZoCWgPQwiSIFwBhXdyQJSGlFKUaBVLl2gWR0CfKBszEaVEdX2UKGgGaAloD0MIF35wPnV+ckCUhpRSlGgVS8doFkdAnyigaR6ni3V9lChoBmgJaA9DCPlISnrYQnBAlIaUUpRoFUvIaBZHQJ8o90A93bF1fZQoaAZoCWgPQwhx4xbz8z9xQJSGlFKUaBVLwGgWR0CfKPdCVryldX2UKGgGaAloD0MI4V0u4ns2ckCUhpRSlGgVTQQBaBZHQJ8pGYKIBR11fZQoaAZoCWgPQwimuoCXmdBlQJSGlFKUaBVN6ANoFkdAnylEiyIHknV9lChoBmgJaA9DCLgehetR4HBAlIaUUpRoFUvBaBZHQJ8pZmFrVON1fZQoaAZoCWgPQwhwQiECDlRvQJSGlFKUaBVLyGgWR0CfKm9l2/zrdX2UKGgGaAloD0MIL4mzImqZcUCUhpRSlGgVS9RoFkdAnywZxJd0JXV9lChoBmgJaA9DCJDcmnRbr3FAlIaUUpRoFUvnaBZHQJ8senwXqJN1fZQoaAZoCWgPQwjTTWIQ2HNxQJSGlFKUaBVL8mgWR0CfLlS3solVdX2UKGgGaAloD0MIhsjp63l9cECUhpRSlGgVS7xoFkdAny7V7MPjGXV9lChoBmgJaA9DCLNBJhk5AHJAlIaUUpRoFUvAaBZHQJ8u+bvw3Hd1fZQoaAZoCWgPQwhxkuaPKT5xQJSGlFKUaBVL0WgWR0CfLzRiw0O3dX2UKGgGaAloD0MIAyMva2KecECUhpRSlGgVS+RoFkdAny9O4XoC+3V9lChoBmgJaA9DCLIrLSP1+G5AlIaUUpRoFUu3aBZHQJ8waxnnMdN1fZQoaAZoCWgPQwjxRuaRP2hxQJSGlFKUaBVL6GgWR0CfMKaisXBQdX2UKGgGaAloD0MIi1QYWwjuYkCUhpRSlGgVTegDaBZHQJ8wyCiAUcp1fZQoaAZoCWgPQwhaLEXyFVNzQJSGlFKUaBVL/GgWR0CfMRQN0/4ZdX2UKGgGaAloD0MIwFlKlpPkcECUhpRSlGgVTQUBaBZHQJ8xmFi8Wbh1fZQoaAZoCWgPQwgbnIh+7RlzQJSGlFKUaBVLyGgWR0CfMmmZVn27dX2UKGgGaAloD0MIT5Za73cQcUCUhpRSlGgVS85oFkdAnzLhbbDdg3V9lChoBmgJaA9DCN6P2y8fiG9AlIaUUpRoFUu6aBZHQJ80VRuTA311fZQoaAZoCWgPQwjEfHkB9mxvQJSGlFKUaBVLz2gWR0CfNIKJEYwZdX2UKGgGaAloD0MItYr+0EwAb0CUhpRSlGgVS8JoFkdAnzSu4oZydXV9lChoBmgJaA9DCI+pu7JLanBAlIaUUpRoFUvDaBZHQJ805uvUz9F1fZQoaAZoCWgPQwhgI0kQbiVzQJSGlFKUaBVL2WgWR0CfNZomXw9adX2UKGgGaAloD0MI+mAZG7p6cECUhpRSlGgVS8FoFkdAnzXb5uZTh3V9lChoBmgJaA9DCHaKVYMwIW9AlIaUUpRoFUu8aBZHQJ82BqFh5Pd1fZQoaAZoCWgPQwjcKR2sv9hwQJSGlFKUaBVLzWgWR0CfNmLHdXT3dX2UKGgGaAloD0MICCEgX4K+cUCUhpRSlGgVS7RoFkdAnzagHzH0b3V9lChoBmgJaA9DCJM3wMy3cXFAlIaUUpRoFUutaBZHQJ83SUQkHD91fZQoaAZoCWgPQwjNIhRbQRljQJSGlFKUaBVN6ANoFkdAnzg7T2FnI3V9lChoBmgJaA9DCHiZYaMsOHNAlIaUUpRoFU0KAWgWR0CfOJAz544ZdX2UKGgGaAloD0MIiEZ3EDuBcUCUhpRSlGgVS85oFkdAnzjCqIacZ3V9lChoBmgJaA9DCLluSnmtKm9AlIaUUpRoFUvFaBZHQJ86bi2lVLl1fZQoaAZoCWgPQwgQecvVT9xxQJSGlFKUaBVL2mgWR0CfOqQcghbGdX2UKGgGaAloD0MIEXNJ1bYgcECUhpRSlGgVS9VoFkdAnzqs/2TPjXV9lChoBmgJaA9DCHam0HnNxnFAlIaUUpRoFUuuaBZHQJ86v7oB7u51fZQoaAZoCWgPQwiTpkHRPFxvQJSGlFKUaBVLumgWR0CfOtQNkOI7dX2UKGgGaAloD0MIjuvf9dl/cUCUhpRSlGgVS61oFkdAnztsMuvll3V9lChoBmgJaA9DCLHeqBVmM3BAlIaUUpRoFUu/aBZHQJ87qpWFN+N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
lunar_agent.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0e8a1dcd4d59463f5f3cf683e438474c239f5b5945b4d137808c8022be5754a
|
3 |
+
size 147318
|
lunar_agent/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
lunar_agent/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f779b389310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f779b3893a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f779b389430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f779b3894c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f779b389550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f779b3895e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f779b389670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f779b389700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f779b389790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f779b389820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f779b3898b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f779b389940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f779b3857e0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678044567223826610,
|
52 |
+
"learning_rate": 0.001,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIZSGj6DhAC8S582u/+1FDnM22O9/gBmOgAAgD8AAIA/jYIfPmq5Sj4WDXG8Z62RvjqgAT5gcam9AAAAAAAAAABAVpy9YBi5PyYyAb8Lk3u9ojurvOvfPr4AAAAAAAAAAHOfxr0pMCy6uLwVunCIBzn7nxW67kscOQAAgD8AAIA/ZkDwvM58mj8Ae269rH4sv0lpYb33GgE9AAAAAAAAAADAgcK9H0iJPB3sEj50Mh6+fP2WPDHrvTwAAAAAAAAAAODrX77q+Zs/BWTovhBAEb9HGT2+dJVJvgAAAAAAAAAAE80QvilBEry91Q28DJWSujSibj1muXY7AACAPwAAgD+Neyq+nJ9BvFOkI7tvbyS5bPWrPeqgUDoAAIA/AACAP+bjRz08SJs/P0IMPh1kKb+rLcc8mpsiPQAAAAAAAAAA09Y3PmHJm7xjAuG6ZJktOTsTCL6XzhQ6AACAPwAAgD8tS06+XW/CPkg5WD17tsK+M14XvMN4sz0AAAAAAAAAAE0ONL4GQqs/R17IvlpmA78D1Yq+llXGvQAAAAAAAAAA8z5qPhvgmz9vDbk+5Tcsv3OiJj5LbWQ9AAAAAAAAAAAAqUE9SB+SunP6QTPcVXGucGs5uWL0q7MAAIA/AACAP818lbvXmbM/qyPLvc79AL4dYNq7dL2wvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlL2lnO8vcUCUhpRSlIwBbJRL1YwBdJRHQJ7xs32mHgx1fZQoaAZoCWgPQwh6cHfWbn9zQJSGlFKUaBVNBQFoFkdAnvLBHXmNi3V9lChoBmgJaA9DCLX7VYDvWG9AlIaUUpRoFUuraBZHQJ7zAvtdAxB1fZQoaAZoCWgPQwgnLzIBvwtnQJSGlFKUaBVN6ANoFkdAnvPRq46OpHV9lChoBmgJaA9DCFERp5NsC3FAlIaUUpRoFUupaBZHQJ73D5k9U0h1fZQoaAZoCWgPQwja5zHKM6xxQJSGlFKUaBVL82gWR0Ce+hN4qwyJdX2UKGgGaAloD0MISx5Pyw9NckCUhpRSlGgVS7BoFkdAnvr/A44p+nV9lChoBmgJaA9DCHC1TlyOoHFAlIaUUpRoFUvxaBZHQJ77NJL/S6V1fZQoaAZoCWgPQwh0CvKzkStxQJSGlFKUaBVL2WgWR0Ce+2yDqW1MdX2UKGgGaAloD0MIHXdKB2uBckCUhpRSlGgVS/RoFkdAnvzYnF5v+HV9lChoBmgJaA9DCJllTwLbQXJAlIaUUpRoFUvWaBZHQJ8AFE4Nqg11fZQoaAZoCWgPQwhxdmuZzI5wQJSGlFKUaBVLp2gWR0CfAixzJZGKdX2UKGgGaAloD0MIHsGNlO0fcECUhpRSlGgVS8JoFkdAnwOcf/3nIXV9lChoBmgJaA9DCCKrWz2njXBAlIaUUpRoFUvtaBZHQJ8EIn4O+Zh1fZQoaAZoCWgPQwgmV7H4TbNdQJSGlFKUaBVN6ANoFkdAnwch82JizHV9lChoBmgJaA9DCMeePZcpTHFAlIaUUpRoFUv0aBZHQJ8HZHz6JqJ1fZQoaAZoCWgPQwjMDYY6LOJhQJSGlFKUaBVN6ANoFkdAnwekmICU5nV9lChoBmgJaA9DCLRXHw/9mGFAlIaUUpRoFU3oA2gWR0CfCFyi22G7dX2UKGgGaAloD0MIU0Da/wC8ZUCUhpRSlGgVTegDaBZHQJ8KEkB0ZFZ1fZQoaAZoCWgPQwhklj0J7GZxQJSGlFKUaBVLrmgWR0CfCtpS75EddX2UKGgGaAloD0MIxqaVQqB/cECUhpRSlGgVS9BoFkdAnwrtsWO6unV9lChoBmgJaA9DCCrgnufPQ2NAlIaUUpRoFU3oA2gWR0CfCwqkuYhMdX2UKGgGaAloD0MIr5P6snR2cECUhpRSlGgVS8doFkdAnwwZDArQPnV9lChoBmgJaA9DCCIZcmw93G9AlIaUUpRoFUu6aBZHQJ8ONWbPQfJ1fZQoaAZoCWgPQwhbmlshrKhyQJSGlFKUaBVL0mgWR0CfDuTgl4TsdX2UKGgGaAloD0MIQZ3y6EaRcECUhpRSlGgVS8loFkdAnw8E1uR9w3V9lChoBmgJaA9DCN9rCI5LA2VAlIaUUpRoFU3oA2gWR0CfD/CsOoYOdX2UKGgGaAloD0MIdOrKZ3m9cECUhpRSlGgVS+ZoFkdAnxDHA6+36XV9lChoBmgJaA9DCDv8NVmjTnJAlIaUUpRoFUu3aBZHQJ8RmPGQ0XR1fZQoaAZoCWgPQwhauReYlXxkQJSGlFKUaBVN6ANoFkdAnxHRgAp8W3V9lChoBmgJaA9DCDVAaaiRe3BAlIaUUpRoFUvHaBZHQJ8SAALiMpB1fZQoaAZoCWgPQwgv3SQGwVNxQJSGlFKUaBVLqmgWR0CfEj60IC2ddX2UKGgGaAloD0MI0qkrn6UHckCUhpRSlGgVS/NoFkdAnxONB4Uvf3V9lChoBmgJaA9DCBqJ0Aj2uXJAlIaUUpRoFUumaBZHQJ8ULGyX2M91fZQoaAZoCWgPQwgjh4ib00hhQJSGlFKUaBVN6ANoFkdAnxWPwuuie3V9lChoBmgJaA9DCA360tuf2mVAlIaUUpRoFU3oA2gWR0CfFaTHsC1adX2UKGgGaAloD0MIzvv/OGEEcUCUhpRSlGgVS9poFkdAnxcLI1cdHXV9lChoBmgJaA9DCPsCeuHOF3BAlIaUUpRoFUvhaBZHQJ8XPdRBNVR1fZQoaAZoCWgPQwg3ABsQoR5wQJSGlFKUaBVL0mgWR0CfGAGjsUqQdX2UKGgGaAloD0MIWRMLfMU+cECUhpRSlGgVS7BoFkdAnxjJ6D5CW3V9lChoBmgJaA9DCB767lYWfmFAlIaUUpRoFU3oA2gWR0CfGNdZq20BdX2UKGgGaAloD0MIHEKVmj28TUCUhpRSlGgVS1VoFkdAnxl0ulGgBnV9lChoBmgJaA9DCI6SV+dYzHFAlIaUUpRoFUvdaBZHQJ8Zf/xUedV1fZQoaAZoCWgPQwiHwmfrIJxyQJSGlFKUaBVL52gWR0CfGtscQyyldX2UKGgGaAloD0MI6Z0KuOchcUCUhpRSlGgVS/BoFkdAnxwaur6tT3V9lChoBmgJaA9DCCKKyRtgwnBAlIaUUpRoFUvKaBZHQJ8c7GBFuvV1fZQoaAZoCWgPQwgheHx7F1lwQJSGlFKUaBVLsGgWR0CfHZfNA1NydX2UKGgGaAloD0MIqyLcZJSWcUCUhpRSlGgVTSgBaBZHQJ8eVzr/sE91fZQoaAZoCWgPQwguxysQPaxtQJSGlFKUaBVLrWgWR0CfH95nDiwTdX2UKGgGaAloD0MIqcKf4c1ibkCUhpRSlGgVS6VoFkdAnyBOOS4e93V9lChoBmgJaA9DCEhwI2XL83BAlIaUUpRoFUvLaBZHQJ8gspnYg7p1fZQoaAZoCWgPQwgE4nX9QpNxQJSGlFKUaBVLuWgWR0CfIViG34KydX2UKGgGaAloD0MIuFhRg2mXcUCUhpRSlGgVS6toFkdAnyFwccU/OnV9lChoBmgJaA9DCBTsv84NXXFAlIaUUpRoFUuMaBZHQJ8izFZPl+51fZQoaAZoCWgPQwgEyxEykF9fQJSGlFKUaBVN6ANoFkdAnySe8Gs3hnV9lChoBmgJaA9DCOaWVkPi+3BAlIaUUpRoFU0lAWgWR0CfJPOeJ53UdX2UKGgGaAloD0MIFva0w18eb0CUhpRSlGgVS8loFkdAnyasKsuFpXV9lChoBmgJaA9DCKcExCSclnBAlIaUUpRoFUu5aBZHQJ8nJBX0Xgt1fZQoaAZoCWgPQwiSIFwBhXdyQJSGlFKUaBVLl2gWR0CfKBszEaVEdX2UKGgGaAloD0MIF35wPnV+ckCUhpRSlGgVS8doFkdAnyigaR6ni3V9lChoBmgJaA9DCPlISnrYQnBAlIaUUpRoFUvIaBZHQJ8o90A93bF1fZQoaAZoCWgPQwhx4xbz8z9xQJSGlFKUaBVLwGgWR0CfKPdCVryldX2UKGgGaAloD0MI4V0u4ns2ckCUhpRSlGgVTQQBaBZHQJ8pGYKIBR11fZQoaAZoCWgPQwimuoCXmdBlQJSGlFKUaBVN6ANoFkdAnylEiyIHknV9lChoBmgJaA9DCLgehetR4HBAlIaUUpRoFUvBaBZHQJ8pZmFrVON1fZQoaAZoCWgPQwhwQiECDlRvQJSGlFKUaBVLyGgWR0CfKm9l2/zrdX2UKGgGaAloD0MIL4mzImqZcUCUhpRSlGgVS9RoFkdAnywZxJd0JXV9lChoBmgJaA9DCJDcmnRbr3FAlIaUUpRoFUvnaBZHQJ8senwXqJN1fZQoaAZoCWgPQwjTTWIQ2HNxQJSGlFKUaBVL8mgWR0CfLlS3solVdX2UKGgGaAloD0MIhsjp63l9cECUhpRSlGgVS7xoFkdAny7V7MPjGXV9lChoBmgJaA9DCLNBJhk5AHJAlIaUUpRoFUvAaBZHQJ8u+bvw3Hd1fZQoaAZoCWgPQwhxkuaPKT5xQJSGlFKUaBVL0WgWR0CfLzRiw0O3dX2UKGgGaAloD0MIAyMva2KecECUhpRSlGgVS+RoFkdAny9O4XoC+3V9lChoBmgJaA9DCLIrLSP1+G5AlIaUUpRoFUu3aBZHQJ8waxnnMdN1fZQoaAZoCWgPQwjxRuaRP2hxQJSGlFKUaBVL6GgWR0CfMKaisXBQdX2UKGgGaAloD0MIi1QYWwjuYkCUhpRSlGgVTegDaBZHQJ8wyCiAUcp1fZQoaAZoCWgPQwhaLEXyFVNzQJSGlFKUaBVL/GgWR0CfMRQN0/4ZdX2UKGgGaAloD0MIwFlKlpPkcECUhpRSlGgVTQUBaBZHQJ8xmFi8Wbh1fZQoaAZoCWgPQwgbnIh+7RlzQJSGlFKUaBVLyGgWR0CfMmmZVn27dX2UKGgGaAloD0MIT5Za73cQcUCUhpRSlGgVS85oFkdAnzLhbbDdg3V9lChoBmgJaA9DCN6P2y8fiG9AlIaUUpRoFUu6aBZHQJ80VRuTA311fZQoaAZoCWgPQwjEfHkB9mxvQJSGlFKUaBVLz2gWR0CfNIKJEYwZdX2UKGgGaAloD0MItYr+0EwAb0CUhpRSlGgVS8JoFkdAnzSu4oZydXV9lChoBmgJaA9DCI+pu7JLanBAlIaUUpRoFUvDaBZHQJ805uvUz9F1fZQoaAZoCWgPQwhgI0kQbiVzQJSGlFKUaBVL2WgWR0CfNZomXw9adX2UKGgGaAloD0MI+mAZG7p6cECUhpRSlGgVS8FoFkdAnzXb5uZTh3V9lChoBmgJaA9DCHaKVYMwIW9AlIaUUpRoFUu8aBZHQJ82BqFh5Pd1fZQoaAZoCWgPQwjcKR2sv9hwQJSGlFKUaBVLzWgWR0CfNmLHdXT3dX2UKGgGaAloD0MICCEgX4K+cUCUhpRSlGgVS7RoFkdAnzagHzH0b3V9lChoBmgJaA9DCJM3wMy3cXFAlIaUUpRoFUutaBZHQJ83SUQkHD91fZQoaAZoCWgPQwjNIhRbQRljQJSGlFKUaBVN6ANoFkdAnzg7T2FnI3V9lChoBmgJaA9DCHiZYaMsOHNAlIaUUpRoFU0KAWgWR0CfOJAz544ZdX2UKGgGaAloD0MIiEZ3EDuBcUCUhpRSlGgVS85oFkdAnzjCqIacZ3V9lChoBmgJaA9DCLluSnmtKm9AlIaUUpRoFUvFaBZHQJ86bi2lVLl1fZQoaAZoCWgPQwgQecvVT9xxQJSGlFKUaBVL2mgWR0CfOqQcghbGdX2UKGgGaAloD0MIEXNJ1bYgcECUhpRSlGgVS9VoFkdAnzqs/2TPjXV9lChoBmgJaA9DCHam0HnNxnFAlIaUUpRoFUuuaBZHQJ86v7oB7u51fZQoaAZoCWgPQwiTpkHRPFxvQJSGlFKUaBVLumgWR0CfOtQNkOI7dX2UKGgGaAloD0MIjuvf9dl/cUCUhpRSlGgVS61oFkdAnztsMuvll3V9lChoBmgJaA9DCLHeqBVmM3BAlIaUUpRoFUu/aBZHQJ87qpWFN+N1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 310,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
lunar_agent/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19b523514102085923c077aa3c7f9fa236f60fd497ee7a82cbf291793389b14d
|
3 |
+
size 87929
|
lunar_agent/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2893d11d3baa7afb09c831d10622ba77aa7a02c102a9758a7ec07d95055448c4
|
3 |
+
size 43393
|
lunar_agent/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_agent/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (224 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 263.77789763061935, "std_reward": 16.217427539937812, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-05T20:02:08.297863"}
|