castejon777 commited on
Commit
e6dc5e9
1 Parent(s): 1bf7982

1st try of training PPO in LunarLander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.78 +/- 16.22
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f779b389310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f779b3893a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f779b389430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f779b3894c0>", "_build": "<function ActorCriticPolicy._build at 0x7f779b389550>", "forward": "<function ActorCriticPolicy.forward at 0x7f779b3895e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f779b389670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f779b389700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f779b389790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f779b389820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f779b3898b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f779b389940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f779b3857e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678044567223826610, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIZSGj6DhAC8S582u/+1FDnM22O9/gBmOgAAgD8AAIA/jYIfPmq5Sj4WDXG8Z62RvjqgAT5gcam9AAAAAAAAAABAVpy9YBi5PyYyAb8Lk3u9ojurvOvfPr4AAAAAAAAAAHOfxr0pMCy6uLwVunCIBzn7nxW67kscOQAAgD8AAIA/ZkDwvM58mj8Ae269rH4sv0lpYb33GgE9AAAAAAAAAADAgcK9H0iJPB3sEj50Mh6+fP2WPDHrvTwAAAAAAAAAAODrX77q+Zs/BWTovhBAEb9HGT2+dJVJvgAAAAAAAAAAE80QvilBEry91Q28DJWSujSibj1muXY7AACAPwAAgD+Neyq+nJ9BvFOkI7tvbyS5bPWrPeqgUDoAAIA/AACAP+bjRz08SJs/P0IMPh1kKb+rLcc8mpsiPQAAAAAAAAAA09Y3PmHJm7xjAuG6ZJktOTsTCL6XzhQ6AACAPwAAgD8tS06+XW/CPkg5WD17tsK+M14XvMN4sz0AAAAAAAAAAE0ONL4GQqs/R17IvlpmA78D1Yq+llXGvQAAAAAAAAAA8z5qPhvgmz9vDbk+5Tcsv3OiJj5LbWQ9AAAAAAAAAAAAqUE9SB+SunP6QTPcVXGucGs5uWL0q7MAAIA/AACAP818lbvXmbM/qyPLvc79AL4dYNq7dL2wvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlL2lnO8vcUCUhpRSlIwBbJRL1YwBdJRHQJ7xs32mHgx1fZQoaAZoCWgPQwh6cHfWbn9zQJSGlFKUaBVNBQFoFkdAnvLBHXmNi3V9lChoBmgJaA9DCLX7VYDvWG9AlIaUUpRoFUuraBZHQJ7zAvtdAxB1fZQoaAZoCWgPQwgnLzIBvwtnQJSGlFKUaBVN6ANoFkdAnvPRq46OpHV9lChoBmgJaA9DCFERp5NsC3FAlIaUUpRoFUupaBZHQJ73D5k9U0h1fZQoaAZoCWgPQwja5zHKM6xxQJSGlFKUaBVL82gWR0Ce+hN4qwyJdX2UKGgGaAloD0MISx5Pyw9NckCUhpRSlGgVS7BoFkdAnvr/A44p+nV9lChoBmgJaA9DCHC1TlyOoHFAlIaUUpRoFUvxaBZHQJ77NJL/S6V1fZQoaAZoCWgPQwh0CvKzkStxQJSGlFKUaBVL2WgWR0Ce+2yDqW1MdX2UKGgGaAloD0MIHXdKB2uBckCUhpRSlGgVS/RoFkdAnvzYnF5v+HV9lChoBmgJaA9DCJllTwLbQXJAlIaUUpRoFUvWaBZHQJ8AFE4Nqg11fZQoaAZoCWgPQwhxdmuZzI5wQJSGlFKUaBVLp2gWR0CfAixzJZGKdX2UKGgGaAloD0MIHsGNlO0fcECUhpRSlGgVS8JoFkdAnwOcf/3nIXV9lChoBmgJaA9DCCKrWz2njXBAlIaUUpRoFUvtaBZHQJ8EIn4O+Zh1fZQoaAZoCWgPQwgmV7H4TbNdQJSGlFKUaBVN6ANoFkdAnwch82JizHV9lChoBmgJaA9DCMeePZcpTHFAlIaUUpRoFUv0aBZHQJ8HZHz6JqJ1fZQoaAZoCWgPQwjMDYY6LOJhQJSGlFKUaBVN6ANoFkdAnwekmICU5nV9lChoBmgJaA9DCLRXHw/9mGFAlIaUUpRoFU3oA2gWR0CfCFyi22G7dX2UKGgGaAloD0MIU0Da/wC8ZUCUhpRSlGgVTegDaBZHQJ8KEkB0ZFZ1fZQoaAZoCWgPQwhklj0J7GZxQJSGlFKUaBVLrmgWR0CfCtpS75EddX2UKGgGaAloD0MIxqaVQqB/cECUhpRSlGgVS9BoFkdAnwrtsWO6unV9lChoBmgJaA9DCCrgnufPQ2NAlIaUUpRoFU3oA2gWR0CfCwqkuYhMdX2UKGgGaAloD0MIr5P6snR2cECUhpRSlGgVS8doFkdAnwwZDArQPnV9lChoBmgJaA9DCCIZcmw93G9AlIaUUpRoFUu6aBZHQJ8ONWbPQfJ1fZQoaAZoCWgPQwhbmlshrKhyQJSGlFKUaBVL0mgWR0CfDuTgl4TsdX2UKGgGaAloD0MIQZ3y6EaRcECUhpRSlGgVS8loFkdAnw8E1uR9w3V9lChoBmgJaA9DCN9rCI5LA2VAlIaUUpRoFU3oA2gWR0CfD/CsOoYOdX2UKGgGaAloD0MIdOrKZ3m9cECUhpRSlGgVS+ZoFkdAnxDHA6+36XV9lChoBmgJaA9DCDv8NVmjTnJAlIaUUpRoFUu3aBZHQJ8RmPGQ0XR1fZQoaAZoCWgPQwhauReYlXxkQJSGlFKUaBVN6ANoFkdAnxHRgAp8W3V9lChoBmgJaA9DCDVAaaiRe3BAlIaUUpRoFUvHaBZHQJ8SAALiMpB1fZQoaAZoCWgPQwgv3SQGwVNxQJSGlFKUaBVLqmgWR0CfEj60IC2ddX2UKGgGaAloD0MI0qkrn6UHckCUhpRSlGgVS/NoFkdAnxONB4Uvf3V9lChoBmgJaA9DCBqJ0Aj2uXJAlIaUUpRoFUumaBZHQJ8ULGyX2M91fZQoaAZoCWgPQwgjh4ib00hhQJSGlFKUaBVN6ANoFkdAnxWPwuuie3V9lChoBmgJaA9DCA360tuf2mVAlIaUUpRoFU3oA2gWR0CfFaTHsC1adX2UKGgGaAloD0MIzvv/OGEEcUCUhpRSlGgVS9poFkdAnxcLI1cdHXV9lChoBmgJaA9DCPsCeuHOF3BAlIaUUpRoFUvhaBZHQJ8XPdRBNVR1fZQoaAZoCWgPQwg3ABsQoR5wQJSGlFKUaBVL0mgWR0CfGAGjsUqQdX2UKGgGaAloD0MIWRMLfMU+cECUhpRSlGgVS7BoFkdAnxjJ6D5CW3V9lChoBmgJaA9DCB767lYWfmFAlIaUUpRoFU3oA2gWR0CfGNdZq20BdX2UKGgGaAloD0MIHEKVmj28TUCUhpRSlGgVS1VoFkdAnxl0ulGgBnV9lChoBmgJaA9DCI6SV+dYzHFAlIaUUpRoFUvdaBZHQJ8Zf/xUedV1fZQoaAZoCWgPQwiHwmfrIJxyQJSGlFKUaBVL52gWR0CfGtscQyyldX2UKGgGaAloD0MI6Z0KuOchcUCUhpRSlGgVS/BoFkdAnxwaur6tT3V9lChoBmgJaA9DCCKKyRtgwnBAlIaUUpRoFUvKaBZHQJ8c7GBFuvV1fZQoaAZoCWgPQwgheHx7F1lwQJSGlFKUaBVLsGgWR0CfHZfNA1NydX2UKGgGaAloD0MIqyLcZJSWcUCUhpRSlGgVTSgBaBZHQJ8eVzr/sE91fZQoaAZoCWgPQwguxysQPaxtQJSGlFKUaBVLrWgWR0CfH95nDiwTdX2UKGgGaAloD0MIqcKf4c1ibkCUhpRSlGgVS6VoFkdAnyBOOS4e93V9lChoBmgJaA9DCEhwI2XL83BAlIaUUpRoFUvLaBZHQJ8gspnYg7p1fZQoaAZoCWgPQwgE4nX9QpNxQJSGlFKUaBVLuWgWR0CfIViG34KydX2UKGgGaAloD0MIuFhRg2mXcUCUhpRSlGgVS6toFkdAnyFwccU/OnV9lChoBmgJaA9DCBTsv84NXXFAlIaUUpRoFUuMaBZHQJ8izFZPl+51fZQoaAZoCWgPQwgEyxEykF9fQJSGlFKUaBVN6ANoFkdAnySe8Gs3hnV9lChoBmgJaA9DCOaWVkPi+3BAlIaUUpRoFU0lAWgWR0CfJPOeJ53UdX2UKGgGaAloD0MIFva0w18eb0CUhpRSlGgVS8loFkdAnyasKsuFpXV9lChoBmgJaA9DCKcExCSclnBAlIaUUpRoFUu5aBZHQJ8nJBX0Xgt1fZQoaAZoCWgPQwiSIFwBhXdyQJSGlFKUaBVLl2gWR0CfKBszEaVEdX2UKGgGaAloD0MIF35wPnV+ckCUhpRSlGgVS8doFkdAnyigaR6ni3V9lChoBmgJaA9DCPlISnrYQnBAlIaUUpRoFUvIaBZHQJ8o90A93bF1fZQoaAZoCWgPQwhx4xbz8z9xQJSGlFKUaBVLwGgWR0CfKPdCVryldX2UKGgGaAloD0MI4V0u4ns2ckCUhpRSlGgVTQQBaBZHQJ8pGYKIBR11fZQoaAZoCWgPQwimuoCXmdBlQJSGlFKUaBVN6ANoFkdAnylEiyIHknV9lChoBmgJaA9DCLgehetR4HBAlIaUUpRoFUvBaBZHQJ8pZmFrVON1fZQoaAZoCWgPQwhwQiECDlRvQJSGlFKUaBVLyGgWR0CfKm9l2/zrdX2UKGgGaAloD0MIL4mzImqZcUCUhpRSlGgVS9RoFkdAnywZxJd0JXV9lChoBmgJaA9DCJDcmnRbr3FAlIaUUpRoFUvnaBZHQJ8senwXqJN1fZQoaAZoCWgPQwjTTWIQ2HNxQJSGlFKUaBVL8mgWR0CfLlS3solVdX2UKGgGaAloD0MIhsjp63l9cECUhpRSlGgVS7xoFkdAny7V7MPjGXV9lChoBmgJaA9DCLNBJhk5AHJAlIaUUpRoFUvAaBZHQJ8u+bvw3Hd1fZQoaAZoCWgPQwhxkuaPKT5xQJSGlFKUaBVL0WgWR0CfLzRiw0O3dX2UKGgGaAloD0MIAyMva2KecECUhpRSlGgVS+RoFkdAny9O4XoC+3V9lChoBmgJaA9DCLIrLSP1+G5AlIaUUpRoFUu3aBZHQJ8waxnnMdN1fZQoaAZoCWgPQwjxRuaRP2hxQJSGlFKUaBVL6GgWR0CfMKaisXBQdX2UKGgGaAloD0MIi1QYWwjuYkCUhpRSlGgVTegDaBZHQJ8wyCiAUcp1fZQoaAZoCWgPQwhaLEXyFVNzQJSGlFKUaBVL/GgWR0CfMRQN0/4ZdX2UKGgGaAloD0MIwFlKlpPkcECUhpRSlGgVTQUBaBZHQJ8xmFi8Wbh1fZQoaAZoCWgPQwgbnIh+7RlzQJSGlFKUaBVLyGgWR0CfMmmZVn27dX2UKGgGaAloD0MIT5Za73cQcUCUhpRSlGgVS85oFkdAnzLhbbDdg3V9lChoBmgJaA9DCN6P2y8fiG9AlIaUUpRoFUu6aBZHQJ80VRuTA311fZQoaAZoCWgPQwjEfHkB9mxvQJSGlFKUaBVLz2gWR0CfNIKJEYwZdX2UKGgGaAloD0MItYr+0EwAb0CUhpRSlGgVS8JoFkdAnzSu4oZydXV9lChoBmgJaA9DCI+pu7JLanBAlIaUUpRoFUvDaBZHQJ805uvUz9F1fZQoaAZoCWgPQwhgI0kQbiVzQJSGlFKUaBVL2WgWR0CfNZomXw9adX2UKGgGaAloD0MI+mAZG7p6cECUhpRSlGgVS8FoFkdAnzXb5uZTh3V9lChoBmgJaA9DCHaKVYMwIW9AlIaUUpRoFUu8aBZHQJ82BqFh5Pd1fZQoaAZoCWgPQwjcKR2sv9hwQJSGlFKUaBVLzWgWR0CfNmLHdXT3dX2UKGgGaAloD0MICCEgX4K+cUCUhpRSlGgVS7RoFkdAnzagHzH0b3V9lChoBmgJaA9DCJM3wMy3cXFAlIaUUpRoFUutaBZHQJ83SUQkHD91fZQoaAZoCWgPQwjNIhRbQRljQJSGlFKUaBVN6ANoFkdAnzg7T2FnI3V9lChoBmgJaA9DCHiZYaMsOHNAlIaUUpRoFU0KAWgWR0CfOJAz544ZdX2UKGgGaAloD0MIiEZ3EDuBcUCUhpRSlGgVS85oFkdAnzjCqIacZ3V9lChoBmgJaA9DCLluSnmtKm9AlIaUUpRoFUvFaBZHQJ86bi2lVLl1fZQoaAZoCWgPQwgQecvVT9xxQJSGlFKUaBVL2mgWR0CfOqQcghbGdX2UKGgGaAloD0MIEXNJ1bYgcECUhpRSlGgVS9VoFkdAnzqs/2TPjXV9lChoBmgJaA9DCHam0HnNxnFAlIaUUpRoFUuuaBZHQJ86v7oB7u51fZQoaAZoCWgPQwiTpkHRPFxvQJSGlFKUaBVLumgWR0CfOtQNkOI7dX2UKGgGaAloD0MIjuvf9dl/cUCUhpRSlGgVS61oFkdAnztsMuvll3V9lChoBmgJaA9DCLHeqBVmM3BAlIaUUpRoFUu/aBZHQJ87qpWFN+N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
lunar_agent.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0e8a1dcd4d59463f5f3cf683e438474c239f5b5945b4d137808c8022be5754a
3
+ size 147318
lunar_agent/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
lunar_agent/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f779b389310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f779b3893a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f779b389430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f779b3894c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f779b389550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f779b3895e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f779b389670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f779b389700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f779b389790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f779b389820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f779b3898b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f779b389940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f779b3857e0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678044567223826610,
52
+ "learning_rate": 0.001,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIZSGj6DhAC8S582u/+1FDnM22O9/gBmOgAAgD8AAIA/jYIfPmq5Sj4WDXG8Z62RvjqgAT5gcam9AAAAAAAAAABAVpy9YBi5PyYyAb8Lk3u9ojurvOvfPr4AAAAAAAAAAHOfxr0pMCy6uLwVunCIBzn7nxW67kscOQAAgD8AAIA/ZkDwvM58mj8Ae269rH4sv0lpYb33GgE9AAAAAAAAAADAgcK9H0iJPB3sEj50Mh6+fP2WPDHrvTwAAAAAAAAAAODrX77q+Zs/BWTovhBAEb9HGT2+dJVJvgAAAAAAAAAAE80QvilBEry91Q28DJWSujSibj1muXY7AACAPwAAgD+Neyq+nJ9BvFOkI7tvbyS5bPWrPeqgUDoAAIA/AACAP+bjRz08SJs/P0IMPh1kKb+rLcc8mpsiPQAAAAAAAAAA09Y3PmHJm7xjAuG6ZJktOTsTCL6XzhQ6AACAPwAAgD8tS06+XW/CPkg5WD17tsK+M14XvMN4sz0AAAAAAAAAAE0ONL4GQqs/R17IvlpmA78D1Yq+llXGvQAAAAAAAAAA8z5qPhvgmz9vDbk+5Tcsv3OiJj5LbWQ9AAAAAAAAAAAAqUE9SB+SunP6QTPcVXGucGs5uWL0q7MAAIA/AACAP818lbvXmbM/qyPLvc79AL4dYNq7dL2wvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlL2lnO8vcUCUhpRSlIwBbJRL1YwBdJRHQJ7xs32mHgx1fZQoaAZoCWgPQwh6cHfWbn9zQJSGlFKUaBVNBQFoFkdAnvLBHXmNi3V9lChoBmgJaA9DCLX7VYDvWG9AlIaUUpRoFUuraBZHQJ7zAvtdAxB1fZQoaAZoCWgPQwgnLzIBvwtnQJSGlFKUaBVN6ANoFkdAnvPRq46OpHV9lChoBmgJaA9DCFERp5NsC3FAlIaUUpRoFUupaBZHQJ73D5k9U0h1fZQoaAZoCWgPQwja5zHKM6xxQJSGlFKUaBVL82gWR0Ce+hN4qwyJdX2UKGgGaAloD0MISx5Pyw9NckCUhpRSlGgVS7BoFkdAnvr/A44p+nV9lChoBmgJaA9DCHC1TlyOoHFAlIaUUpRoFUvxaBZHQJ77NJL/S6V1fZQoaAZoCWgPQwh0CvKzkStxQJSGlFKUaBVL2WgWR0Ce+2yDqW1MdX2UKGgGaAloD0MIHXdKB2uBckCUhpRSlGgVS/RoFkdAnvzYnF5v+HV9lChoBmgJaA9DCJllTwLbQXJAlIaUUpRoFUvWaBZHQJ8AFE4Nqg11fZQoaAZoCWgPQwhxdmuZzI5wQJSGlFKUaBVLp2gWR0CfAixzJZGKdX2UKGgGaAloD0MIHsGNlO0fcECUhpRSlGgVS8JoFkdAnwOcf/3nIXV9lChoBmgJaA9DCCKrWz2njXBAlIaUUpRoFUvtaBZHQJ8EIn4O+Zh1fZQoaAZoCWgPQwgmV7H4TbNdQJSGlFKUaBVN6ANoFkdAnwch82JizHV9lChoBmgJaA9DCMeePZcpTHFAlIaUUpRoFUv0aBZHQJ8HZHz6JqJ1fZQoaAZoCWgPQwjMDYY6LOJhQJSGlFKUaBVN6ANoFkdAnwekmICU5nV9lChoBmgJaA9DCLRXHw/9mGFAlIaUUpRoFU3oA2gWR0CfCFyi22G7dX2UKGgGaAloD0MIU0Da/wC8ZUCUhpRSlGgVTegDaBZHQJ8KEkB0ZFZ1fZQoaAZoCWgPQwhklj0J7GZxQJSGlFKUaBVLrmgWR0CfCtpS75EddX2UKGgGaAloD0MIxqaVQqB/cECUhpRSlGgVS9BoFkdAnwrtsWO6unV9lChoBmgJaA9DCCrgnufPQ2NAlIaUUpRoFU3oA2gWR0CfCwqkuYhMdX2UKGgGaAloD0MIr5P6snR2cECUhpRSlGgVS8doFkdAnwwZDArQPnV9lChoBmgJaA9DCCIZcmw93G9AlIaUUpRoFUu6aBZHQJ8ONWbPQfJ1fZQoaAZoCWgPQwhbmlshrKhyQJSGlFKUaBVL0mgWR0CfDuTgl4TsdX2UKGgGaAloD0MIQZ3y6EaRcECUhpRSlGgVS8loFkdAnw8E1uR9w3V9lChoBmgJaA9DCN9rCI5LA2VAlIaUUpRoFU3oA2gWR0CfD/CsOoYOdX2UKGgGaAloD0MIdOrKZ3m9cECUhpRSlGgVS+ZoFkdAnxDHA6+36XV9lChoBmgJaA9DCDv8NVmjTnJAlIaUUpRoFUu3aBZHQJ8RmPGQ0XR1fZQoaAZoCWgPQwhauReYlXxkQJSGlFKUaBVN6ANoFkdAnxHRgAp8W3V9lChoBmgJaA9DCDVAaaiRe3BAlIaUUpRoFUvHaBZHQJ8SAALiMpB1fZQoaAZoCWgPQwgv3SQGwVNxQJSGlFKUaBVLqmgWR0CfEj60IC2ddX2UKGgGaAloD0MI0qkrn6UHckCUhpRSlGgVS/NoFkdAnxONB4Uvf3V9lChoBmgJaA9DCBqJ0Aj2uXJAlIaUUpRoFUumaBZHQJ8ULGyX2M91fZQoaAZoCWgPQwgjh4ib00hhQJSGlFKUaBVN6ANoFkdAnxWPwuuie3V9lChoBmgJaA9DCA360tuf2mVAlIaUUpRoFU3oA2gWR0CfFaTHsC1adX2UKGgGaAloD0MIzvv/OGEEcUCUhpRSlGgVS9poFkdAnxcLI1cdHXV9lChoBmgJaA9DCPsCeuHOF3BAlIaUUpRoFUvhaBZHQJ8XPdRBNVR1fZQoaAZoCWgPQwg3ABsQoR5wQJSGlFKUaBVL0mgWR0CfGAGjsUqQdX2UKGgGaAloD0MIWRMLfMU+cECUhpRSlGgVS7BoFkdAnxjJ6D5CW3V9lChoBmgJaA9DCB767lYWfmFAlIaUUpRoFU3oA2gWR0CfGNdZq20BdX2UKGgGaAloD0MIHEKVmj28TUCUhpRSlGgVS1VoFkdAnxl0ulGgBnV9lChoBmgJaA9DCI6SV+dYzHFAlIaUUpRoFUvdaBZHQJ8Zf/xUedV1fZQoaAZoCWgPQwiHwmfrIJxyQJSGlFKUaBVL52gWR0CfGtscQyyldX2UKGgGaAloD0MI6Z0KuOchcUCUhpRSlGgVS/BoFkdAnxwaur6tT3V9lChoBmgJaA9DCCKKyRtgwnBAlIaUUpRoFUvKaBZHQJ8c7GBFuvV1fZQoaAZoCWgPQwgheHx7F1lwQJSGlFKUaBVLsGgWR0CfHZfNA1NydX2UKGgGaAloD0MIqyLcZJSWcUCUhpRSlGgVTSgBaBZHQJ8eVzr/sE91fZQoaAZoCWgPQwguxysQPaxtQJSGlFKUaBVLrWgWR0CfH95nDiwTdX2UKGgGaAloD0MIqcKf4c1ibkCUhpRSlGgVS6VoFkdAnyBOOS4e93V9lChoBmgJaA9DCEhwI2XL83BAlIaUUpRoFUvLaBZHQJ8gspnYg7p1fZQoaAZoCWgPQwgE4nX9QpNxQJSGlFKUaBVLuWgWR0CfIViG34KydX2UKGgGaAloD0MIuFhRg2mXcUCUhpRSlGgVS6toFkdAnyFwccU/OnV9lChoBmgJaA9DCBTsv84NXXFAlIaUUpRoFUuMaBZHQJ8izFZPl+51fZQoaAZoCWgPQwgEyxEykF9fQJSGlFKUaBVN6ANoFkdAnySe8Gs3hnV9lChoBmgJaA9DCOaWVkPi+3BAlIaUUpRoFU0lAWgWR0CfJPOeJ53UdX2UKGgGaAloD0MIFva0w18eb0CUhpRSlGgVS8loFkdAnyasKsuFpXV9lChoBmgJaA9DCKcExCSclnBAlIaUUpRoFUu5aBZHQJ8nJBX0Xgt1fZQoaAZoCWgPQwiSIFwBhXdyQJSGlFKUaBVLl2gWR0CfKBszEaVEdX2UKGgGaAloD0MIF35wPnV+ckCUhpRSlGgVS8doFkdAnyigaR6ni3V9lChoBmgJaA9DCPlISnrYQnBAlIaUUpRoFUvIaBZHQJ8o90A93bF1fZQoaAZoCWgPQwhx4xbz8z9xQJSGlFKUaBVLwGgWR0CfKPdCVryldX2UKGgGaAloD0MI4V0u4ns2ckCUhpRSlGgVTQQBaBZHQJ8pGYKIBR11fZQoaAZoCWgPQwimuoCXmdBlQJSGlFKUaBVN6ANoFkdAnylEiyIHknV9lChoBmgJaA9DCLgehetR4HBAlIaUUpRoFUvBaBZHQJ8pZmFrVON1fZQoaAZoCWgPQwhwQiECDlRvQJSGlFKUaBVLyGgWR0CfKm9l2/zrdX2UKGgGaAloD0MIL4mzImqZcUCUhpRSlGgVS9RoFkdAnywZxJd0JXV9lChoBmgJaA9DCJDcmnRbr3FAlIaUUpRoFUvnaBZHQJ8senwXqJN1fZQoaAZoCWgPQwjTTWIQ2HNxQJSGlFKUaBVL8mgWR0CfLlS3solVdX2UKGgGaAloD0MIhsjp63l9cECUhpRSlGgVS7xoFkdAny7V7MPjGXV9lChoBmgJaA9DCLNBJhk5AHJAlIaUUpRoFUvAaBZHQJ8u+bvw3Hd1fZQoaAZoCWgPQwhxkuaPKT5xQJSGlFKUaBVL0WgWR0CfLzRiw0O3dX2UKGgGaAloD0MIAyMva2KecECUhpRSlGgVS+RoFkdAny9O4XoC+3V9lChoBmgJaA9DCLIrLSP1+G5AlIaUUpRoFUu3aBZHQJ8waxnnMdN1fZQoaAZoCWgPQwjxRuaRP2hxQJSGlFKUaBVL6GgWR0CfMKaisXBQdX2UKGgGaAloD0MIi1QYWwjuYkCUhpRSlGgVTegDaBZHQJ8wyCiAUcp1fZQoaAZoCWgPQwhaLEXyFVNzQJSGlFKUaBVL/GgWR0CfMRQN0/4ZdX2UKGgGaAloD0MIwFlKlpPkcECUhpRSlGgVTQUBaBZHQJ8xmFi8Wbh1fZQoaAZoCWgPQwgbnIh+7RlzQJSGlFKUaBVLyGgWR0CfMmmZVn27dX2UKGgGaAloD0MIT5Za73cQcUCUhpRSlGgVS85oFkdAnzLhbbDdg3V9lChoBmgJaA9DCN6P2y8fiG9AlIaUUpRoFUu6aBZHQJ80VRuTA311fZQoaAZoCWgPQwjEfHkB9mxvQJSGlFKUaBVLz2gWR0CfNIKJEYwZdX2UKGgGaAloD0MItYr+0EwAb0CUhpRSlGgVS8JoFkdAnzSu4oZydXV9lChoBmgJaA9DCI+pu7JLanBAlIaUUpRoFUvDaBZHQJ805uvUz9F1fZQoaAZoCWgPQwhgI0kQbiVzQJSGlFKUaBVL2WgWR0CfNZomXw9adX2UKGgGaAloD0MI+mAZG7p6cECUhpRSlGgVS8FoFkdAnzXb5uZTh3V9lChoBmgJaA9DCHaKVYMwIW9AlIaUUpRoFUu8aBZHQJ82BqFh5Pd1fZQoaAZoCWgPQwjcKR2sv9hwQJSGlFKUaBVLzWgWR0CfNmLHdXT3dX2UKGgGaAloD0MICCEgX4K+cUCUhpRSlGgVS7RoFkdAnzagHzH0b3V9lChoBmgJaA9DCJM3wMy3cXFAlIaUUpRoFUutaBZHQJ83SUQkHD91fZQoaAZoCWgPQwjNIhRbQRljQJSGlFKUaBVN6ANoFkdAnzg7T2FnI3V9lChoBmgJaA9DCHiZYaMsOHNAlIaUUpRoFU0KAWgWR0CfOJAz544ZdX2UKGgGaAloD0MIiEZ3EDuBcUCUhpRSlGgVS85oFkdAnzjCqIacZ3V9lChoBmgJaA9DCLluSnmtKm9AlIaUUpRoFUvFaBZHQJ86bi2lVLl1fZQoaAZoCWgPQwgQecvVT9xxQJSGlFKUaBVL2mgWR0CfOqQcghbGdX2UKGgGaAloD0MIEXNJ1bYgcECUhpRSlGgVS9VoFkdAnzqs/2TPjXV9lChoBmgJaA9DCHam0HnNxnFAlIaUUpRoFUuuaBZHQJ86v7oB7u51fZQoaAZoCWgPQwiTpkHRPFxvQJSGlFKUaBVLumgWR0CfOtQNkOI7dX2UKGgGaAloD0MIjuvf9dl/cUCUhpRSlGgVS61oFkdAnztsMuvll3V9lChoBmgJaA9DCLHeqBVmM3BAlIaUUpRoFUu/aBZHQJ87qpWFN+N1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 310,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
lunar_agent/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19b523514102085923c077aa3c7f9fa236f60fd497ee7a82cbf291793389b14d
3
+ size 87929
lunar_agent/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2893d11d3baa7afb09c831d10622ba77aa7a02c102a9758a7ec07d95055448c4
3
+ size 43393
lunar_agent/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_agent/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (224 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.77789763061935, "std_reward": 16.217427539937812, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-05T20:02:08.297863"}