File size: 3,379 Bytes
211a63a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
library_name: transformers
license: mit
base_model: catsOfpeople/speecht5_finetuned_emirhan_soomea
tags:
- generated_from_trainer
model-index:
- name: speecht5_soome-V2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_soome-V2
This model is a fine-tuned version of [catsOfpeople/speecht5_finetuned_emirhan_soomea](https://huggingface.co/catsOfpeople/speecht5_finetuned_emirhan_soomea) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2695
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 3500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:--------:|:----:|:---------------:|
| 0.9648 | 4.5198 | 100 | 0.4308 |
| 0.4495 | 9.0395 | 200 | 0.3583 |
| 0.384 | 13.5593 | 300 | 0.3418 |
| 0.3637 | 18.0791 | 400 | 0.3177 |
| 0.3443 | 22.5989 | 500 | 0.3119 |
| 0.3366 | 27.1186 | 600 | 0.3099 |
| 0.3328 | 31.6384 | 700 | 0.3222 |
| 0.3238 | 36.1582 | 800 | 0.3091 |
| 0.3196 | 40.6780 | 900 | 0.2960 |
| 0.3156 | 45.1977 | 1000 | 0.2977 |
| 0.3123 | 49.7175 | 1100 | 0.2960 |
| 0.3107 | 54.2373 | 1200 | 0.2904 |
| 0.3029 | 58.7571 | 1300 | 0.2891 |
| 0.2978 | 63.2768 | 1400 | 0.2904 |
| 0.3012 | 67.7966 | 1500 | 0.2855 |
| 0.2977 | 72.3164 | 1600 | 0.2863 |
| 0.2915 | 76.8362 | 1700 | 0.2855 |
| 0.2935 | 81.3559 | 1800 | 0.2853 |
| 0.2877 | 85.8757 | 1900 | 0.2794 |
| 0.2839 | 90.3955 | 2000 | 0.2820 |
| 0.2847 | 94.9153 | 2100 | 0.2781 |
| 0.2831 | 99.4350 | 2200 | 0.2799 |
| 0.283 | 103.9548 | 2300 | 0.2811 |
| 0.2792 | 108.4746 | 2400 | 0.2774 |
| 0.2788 | 112.9944 | 2500 | 0.2813 |
| 0.2793 | 117.5141 | 2600 | 0.2755 |
| 0.2746 | 122.0339 | 2700 | 0.2769 |
| 0.2735 | 126.5537 | 2800 | 0.2729 |
| 0.2728 | 131.0734 | 2900 | 0.2764 |
| 0.2735 | 135.5932 | 3000 | 0.2751 |
| 0.2726 | 140.1130 | 3100 | 0.2754 |
| 0.2691 | 144.6328 | 3200 | 0.2707 |
| 0.2711 | 149.1525 | 3300 | 0.2717 |
| 0.2679 | 153.6723 | 3400 | 0.2724 |
| 0.2665 | 158.1921 | 3500 | 0.2695 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|