File size: 3,857 Bytes
f7812f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
language:
- en
tags:
- summarization
datasets:
- scientific_papers
metrics:
- rouge
model-index:
- name: ccdv/lsg-bart-base-16384-mediasum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
**This model relies on a custom modeling file, you need to add trust_remote_code=True**\
**See [\#13467](https://github.com/huggingface/transformers/pull/13467)**
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-16384-mediasum", trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-16384-mediasum", trust_remote_code=True)
text = "Replace by what you want."
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0)
generated_text = pipe(
text,
truncation=True,
max_length=64,
no_repeat_ngram_size=7,
num_beams=2,
early_stopping=True
)
```
# ccdv/lsg-bart-base-16384-mediasum
This model is a fine-tuned version of [ccdv/lsg-bart-base-4096-mediasum](https://huggingface.co/ccdv/lsg-bart-base-4096-mediasum) on the [ccdv/mediasum roberta_prepended mediasum](https://huggingface.co/datasets/ccdv/mediasum) dataset. \
The model is converted to handle 16384 long sequences and fine-tuned accordingly during 1 epoch. \
It achieves the following results on the test set:
| Length | Global tokens | Fine-tuning | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum |
|:------ |:------------- |:----------- |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- |
| 16384 | 64 | Full | 256 | 0 | 768 | 35.31 | 18.35 | 31.81 | 32.47 |
| 16384 | 1 | Full | 256 | 0 | 768 | 35.21 | 18.20 | 31.73 | 32.37 |
| 16384 | 64 | Global only | 256 | 0 | 768 | 35.22 | 18.08 | 31.54 | 32.21 |
| 16384 | 1 | None | 256 | 0 | 768 | 35.17 | 18.13 | 31.54 | 32.20 |
Reference model:
| Length | Global tokens | Fine-tuning | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum |
|:------ |:------------- |:----------- |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- |
| 4096 | 1 | - | 256 | 0 | 768 | 35.16 | 18.13 | 31.54 | 32.20
## Model description
The model relies on Local-Sparse-Global attention to handle long sequences:
![attn](attn.png)
The model has about ~145 millions parameters (6 encoder layers - 6 decoder layers). \
The model is warm started from [ccdv/lsg-bart-base-4096-mediasum](https://huggingface.co/ccdv/lsg-bart-base-4096-mediasum), converted to handle long sequences (encoder only) and fine tuned.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
### Generate hyperparameters
The following hyperparameters were used during generation:
- dataset_name: ccdv/mediasum
- dataset_config_name: roberta_prepended
- eval_batch_size: 8
- eval_samples: 10000
- early_stopping: True
- ignore_pad_token_for_loss: True
- length_penalty: 2.0
- max_length: 128
- min_length: 3
- num_beams: 5
- no_repeat_ngram_size: None
- seed: 123
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.1+cu102
- Datasets 2.1.0
- Tokenizers 0.11.6
|