small fix with torch.finfo
Browse files- modeling_lsg_roberta.py +70 -101
modeling_lsg_roberta.py
CHANGED
@@ -198,7 +198,7 @@ class CausalAttentionProduct(nn.Module):
|
|
198 |
diagonal=-1
|
199 |
)
|
200 |
causal_mask = causal_mask.T * torch.finfo(attention_scores.dtype).min
|
201 |
-
attention_scores[..., -causal_shape[0]:, -causal_shape[1]:] = causal_mask
|
202 |
|
203 |
del attention_mask
|
204 |
|
@@ -546,7 +546,8 @@ class LSGSelfAttention(BaseSelfAttention):
|
|
546 |
keys = keys.sum(dim=-2) / (mask + 1e-6)
|
547 |
values = values.sum(dim=-2) / (mask + 1e-6)
|
548 |
|
549 |
-
mask = (1. - mask.clamp(0, 1))
|
|
|
550 |
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)
|
551 |
|
552 |
def get_sparse_tokens_with_stride(self, keys, values, mask):
|
@@ -611,7 +612,8 @@ class LSGSelfAttention(BaseSelfAttention):
|
|
611 |
keys /= mask + 1e-8
|
612 |
values /= mask + 1e-8
|
613 |
|
614 |
-
mask = (1. - mask.clamp(0, 1))
|
|
|
615 |
|
616 |
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.transpose(-1, -2).reshape(n, h, 1, -1)
|
617 |
|
@@ -897,6 +899,71 @@ class LSGRobertaEncoder(RobertaEncoder):
|
|
897 |
|
898 |
self.layer = nn.ModuleList([LSGRobertaLayer(config) for _ in range(config.num_hidden_layers)])
|
899 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
900 |
|
901 |
class LSGRobertaPreTrainedModel(RobertaPreTrainedModel):
|
902 |
"""
|
@@ -924,16 +991,6 @@ class LSGRobertaModel(LSGRobertaPreTrainedModel, RobertaModel):
|
|
924 |
|
925 |
LSGRobertaPreTrainedModel.__init__(self, config)
|
926 |
|
927 |
-
assert hasattr(config, "num_global_tokens")
|
928 |
-
self.num_global_tokens = config.num_global_tokens
|
929 |
-
self.pad_idx = config.pad_token_id
|
930 |
-
|
931 |
-
assert hasattr(config, "block_size") and hasattr(config, "adaptive")
|
932 |
-
self.block_size = config.block_size
|
933 |
-
self.adaptive = config.adaptive
|
934 |
-
self.mask_first_token = config.mask_first_token
|
935 |
-
self.pool_with_global = config.pool_with_global
|
936 |
-
|
937 |
self.embeddings = LSGRobertaEmbeddings(config)
|
938 |
self.encoder = LSGRobertaEncoder(config)
|
939 |
self.pooler = RobertaPooler(config) if add_pooling_layer else None
|
@@ -946,94 +1003,6 @@ class LSGRobertaModel(LSGRobertaPreTrainedModel, RobertaModel):
|
|
946 |
# Initialize weights and apply final processing
|
947 |
self.post_init()
|
948 |
|
949 |
-
def forward(
|
950 |
-
self,
|
951 |
-
input_ids=None,
|
952 |
-
attention_mask=None,
|
953 |
-
token_type_ids=None,
|
954 |
-
position_ids=None,
|
955 |
-
head_mask=None,
|
956 |
-
inputs_embeds=None,
|
957 |
-
encoder_hidden_states=None,
|
958 |
-
encoder_attention_mask=None,
|
959 |
-
past_key_values=None,
|
960 |
-
use_cache=None,
|
961 |
-
output_attentions=None,
|
962 |
-
output_hidden_states=None,
|
963 |
-
return_dict=None
|
964 |
-
):
|
965 |
-
|
966 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
967 |
-
output_hidden_states = (
|
968 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
969 |
-
)
|
970 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
971 |
-
|
972 |
-
inputs_ = input_ids if input_ids is not None else inputs_embeds
|
973 |
-
n, t = inputs_.size()[:2]
|
974 |
-
|
975 |
-
if attention_mask is None:
|
976 |
-
attention_mask = torch.ones(n, t, device=inputs_.device, dtype=inputs_.dtype)
|
977 |
-
if self.mask_first_token:
|
978 |
-
attention_mask[:,0] = 0
|
979 |
-
|
980 |
-
b = self.block_size * 2
|
981 |
-
pad = t % self.block_size
|
982 |
-
|
983 |
-
# Check if t is multiple of block_size and pad
|
984 |
-
if self.adaptive and t > b and pad > 0:
|
985 |
-
pad_length = self.block_size - pad
|
986 |
-
if input_ids is not None:
|
987 |
-
input_ids = torch.nn.functional.pad(input_ids, (0, pad_length), value=self.pad_idx)
|
988 |
-
else:
|
989 |
-
inputs_embeds = torch.nn.functional.pad(inputs_embeds.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2)
|
990 |
-
|
991 |
-
attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=0)
|
992 |
-
|
993 |
-
if token_type_ids is not None:
|
994 |
-
token_type_ids = torch.nn.functional.pad(token_type_ids, (0, pad_length), value=0)
|
995 |
-
if position_ids is not None:
|
996 |
-
position_ids = torch.nn.functional.pad(position_ids, (0, pad_length), value=0)
|
997 |
-
|
998 |
-
n, t_ = attention_mask.size()
|
999 |
-
|
1000 |
-
encoder_outputs = super().forward(
|
1001 |
-
input_ids=input_ids,
|
1002 |
-
attention_mask=attention_mask,
|
1003 |
-
token_type_ids=token_type_ids,
|
1004 |
-
position_ids=position_ids,
|
1005 |
-
head_mask=head_mask,
|
1006 |
-
inputs_embeds=inputs_embeds,
|
1007 |
-
encoder_hidden_states=encoder_hidden_states,
|
1008 |
-
encoder_attention_mask=encoder_attention_mask,
|
1009 |
-
past_key_values=past_key_values,
|
1010 |
-
use_cache=use_cache,
|
1011 |
-
output_attentions=output_attentions,
|
1012 |
-
output_hidden_states=output_hidden_states,
|
1013 |
-
return_dict=return_dict
|
1014 |
-
)
|
1015 |
-
|
1016 |
-
sequence_output = encoder_outputs[0]
|
1017 |
-
if self.pool_with_global:
|
1018 |
-
sequence_output[:, self.num_global_tokens] = sequence_output[:, 0]
|
1019 |
-
|
1020 |
-
diff = t - t_
|
1021 |
-
n, _, d = sequence_output.size()
|
1022 |
-
sequence_output = sequence_output[..., self.num_global_tokens:, :]
|
1023 |
-
|
1024 |
-
# Adapt sequence to initial shape
|
1025 |
-
if diff < 0:
|
1026 |
-
sequence_output = sequence_output[:, :t]
|
1027 |
-
|
1028 |
-
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1029 |
-
|
1030 |
-
if not return_dict:
|
1031 |
-
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1032 |
-
|
1033 |
-
encoder_outputs.last_hidden_state = sequence_output
|
1034 |
-
encoder_outputs.pooler_output = pooled_output
|
1035 |
-
return encoder_outputs
|
1036 |
-
|
1037 |
def get_extended_attention_mask(self, attention_mask, input_shape, device=None):
|
1038 |
|
1039 |
# Do not rely on original triangular mask from BERT/RoBERTa for causalLM
|
|
|
198 |
diagonal=-1
|
199 |
)
|
200 |
causal_mask = causal_mask.T * torch.finfo(attention_scores.dtype).min
|
201 |
+
attention_scores[..., -causal_shape[0]:, -causal_shape[1] + 1:] = causal_mask[:, 1:]
|
202 |
|
203 |
del attention_mask
|
204 |
|
|
|
546 |
keys = keys.sum(dim=-2) / (mask + 1e-6)
|
547 |
values = values.sum(dim=-2) / (mask + 1e-6)
|
548 |
|
549 |
+
mask = (1. - mask.clamp(0, 1))
|
550 |
+
mask *= torch.finfo(mask.dtype).min
|
551 |
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)
|
552 |
|
553 |
def get_sparse_tokens_with_stride(self, keys, values, mask):
|
|
|
612 |
keys /= mask + 1e-8
|
613 |
values /= mask + 1e-8
|
614 |
|
615 |
+
mask = (1. - mask.clamp(0, 1))
|
616 |
+
mask *= torch.finfo(mask.dtype).min
|
617 |
|
618 |
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.transpose(-1, -2).reshape(n, h, 1, -1)
|
619 |
|
|
|
899 |
|
900 |
self.layer = nn.ModuleList([LSGRobertaLayer(config) for _ in range(config.num_hidden_layers)])
|
901 |
|
902 |
+
assert hasattr(config, "num_global_tokens")
|
903 |
+
self.num_global_tokens = config.num_global_tokens
|
904 |
+
self.pad_idx = config.pad_token_id
|
905 |
+
|
906 |
+
assert hasattr(config, "block_size") and hasattr(config, "adaptive")
|
907 |
+
self.block_size = config.block_size
|
908 |
+
self.adaptive = config.adaptive
|
909 |
+
self.mask_first_token = config.mask_first_token
|
910 |
+
self.pool_with_global = config.pool_with_global
|
911 |
+
|
912 |
+
def forward(
|
913 |
+
self,
|
914 |
+
hidden_states: torch.Tensor,
|
915 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
916 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
917 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
918 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
919 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
920 |
+
use_cache: Optional[bool] = None,
|
921 |
+
output_attentions: Optional[bool] = False,
|
922 |
+
output_hidden_states: Optional[bool] = False,
|
923 |
+
return_dict: Optional[bool] = True,
|
924 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
925 |
+
|
926 |
+
mask_value = torch.finfo(attention_mask.dtype).min
|
927 |
+
n, _, __, t = attention_mask.size()
|
928 |
+
|
929 |
+
if not (self.config.is_decoder and encoder_hidden_states is not None):
|
930 |
+
b = self.block_size * 2
|
931 |
+
pad = t % self.block_size
|
932 |
+
|
933 |
+
# Check if t is multiple of block_size and pad
|
934 |
+
if self.adaptive and t > b and pad > 0:
|
935 |
+
pad_length = self.block_size - pad
|
936 |
+
hidden_states = torch.nn.functional.pad(hidden_states.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2)
|
937 |
+
attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=mask_value)
|
938 |
+
|
939 |
+
if self.mask_first_token:
|
940 |
+
attention_mask[..., 0] = mask_value
|
941 |
+
|
942 |
+
encoder_outputs = super().forward(
|
943 |
+
hidden_states=hidden_states,
|
944 |
+
attention_mask=attention_mask,
|
945 |
+
head_mask=head_mask,
|
946 |
+
encoder_hidden_states=encoder_hidden_states,
|
947 |
+
encoder_attention_mask=encoder_attention_mask,
|
948 |
+
past_key_values=past_key_values,
|
949 |
+
use_cache=use_cache,
|
950 |
+
output_attentions=output_attentions,
|
951 |
+
output_hidden_states=output_hidden_states,
|
952 |
+
return_dict=return_dict
|
953 |
+
)
|
954 |
+
|
955 |
+
sequence_output = encoder_outputs[0]
|
956 |
+
if self.pool_with_global:
|
957 |
+
sequence_output[:, self.num_global_tokens] = sequence_output[:, 0]
|
958 |
+
|
959 |
+
# Adapt sequence to initial shape
|
960 |
+
sequence_output = sequence_output[..., self.num_global_tokens: t + self.num_global_tokens, :]
|
961 |
+
|
962 |
+
if not return_dict:
|
963 |
+
return (sequence_output, ) + encoder_outputs[1:]
|
964 |
+
|
965 |
+
encoder_outputs.last_hidden_state = sequence_output
|
966 |
+
return encoder_outputs
|
967 |
|
968 |
class LSGRobertaPreTrainedModel(RobertaPreTrainedModel):
|
969 |
"""
|
|
|
991 |
|
992 |
LSGRobertaPreTrainedModel.__init__(self, config)
|
993 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
994 |
self.embeddings = LSGRobertaEmbeddings(config)
|
995 |
self.encoder = LSGRobertaEncoder(config)
|
996 |
self.pooler = RobertaPooler(config) if add_pooling_layer else None
|
|
|
1003 |
# Initialize weights and apply final processing
|
1004 |
self.post_init()
|
1005 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1006 |
def get_extended_attention_mask(self, attention_mask, input_shape, device=None):
|
1007 |
|
1008 |
# Do not rely on original triangular mask from BERT/RoBERTa for causalLM
|