|
from logging import warn |
|
import torch |
|
from transformers.models.pegasus.modeling_pegasus import * |
|
from transformers.models.pegasus.modeling_pegasus import _expand_mask |
|
import torch.nn as nn |
|
import sys |
|
|
|
AUTO_MAP = { |
|
"AutoModel": "modeling_lsg_pegasus.LSGPegasusModel", |
|
"AutoModelForCausalLM": "modeling_lsg_pegasus.LSGPegasusForCausalLM", |
|
"AutoModelForSeq2SeqLM": "modeling_lsg_pegasus.LSGPegasusForConditionalGeneration" |
|
} |
|
|
|
class LSGPegasusConfig(PegasusConfig): |
|
""" |
|
This class overrides :class:`~transformers.RobertaConfig`. Please check the superclass for the appropriate |
|
documentation alongside usage examples. |
|
""" |
|
|
|
base_model_prefix = "lsg" |
|
model_type = "pegasus" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} |
|
|
|
def __init__( |
|
self, |
|
adaptive=True, |
|
base_model_prefix="lsg", |
|
block_size=128, |
|
lsh_num_pre_rounds=1, |
|
mask_first_token=False, |
|
num_global_tokens=1, |
|
pass_global_tokens_to_decoder=True, |
|
pool_with_global=True, |
|
sparse_block_size=128, |
|
sparsity_factor=2, |
|
sparsity_type="norm", |
|
**kwargs |
|
): |
|
"""Constructs LSGConfig.""" |
|
super().__init__(**kwargs) |
|
|
|
self.adaptive = adaptive |
|
self.auto_map = AUTO_MAP |
|
self.base_model_prefix = base_model_prefix |
|
self.block_size = block_size |
|
self.lsh_num_pre_rounds = lsh_num_pre_rounds |
|
self.mask_first_token = mask_first_token |
|
self.num_global_tokens = num_global_tokens |
|
self.pass_global_tokens_to_decoder = pass_global_tokens_to_decoder |
|
self.pool_with_global = pool_with_global |
|
self.sparse_block_size = sparse_block_size |
|
self.sparsity_factor = sparsity_factor |
|
self.sparsity_type = sparsity_type |
|
|
|
if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride"]: |
|
logger.warning( |
|
"[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride'], setting sparsity_type=None, computation will skip sparse attention") |
|
self.sparsity_type = None |
|
|
|
if self.sparsity_type in ["stride", "block_stride"]: |
|
if self.sparsity_factor > self.encoder_attention_heads: |
|
logger.warning( |
|
"[WARNING CONFIG]: sparsity_factor > encoder_attention_heads is not recommended for stride/block_stride sparsity" |
|
) |
|
|
|
if self.num_global_tokens < 1: |
|
logger.warning( |
|
"[WARNING CONFIG]: num_global_tokens < 1 is not compatible, setting num_global_tokens=1" |
|
) |
|
self.num_global_tokens = 1 |
|
elif self.num_global_tokens > 512: |
|
logger.warning( |
|
"[WARNING CONFIG]: num_global_tokens > 512 is not compatible, setting num_global_tokens=512" |
|
) |
|
self.num_global_tokens = 512 |
|
|
|
if self.sparsity_factor > 0: |
|
assert self.block_size % self.sparsity_factor == 0, "[ERROR CONFIG]: block_size must be divisible by sparsity_factor" |
|
assert self.block_size//self.sparsity_factor >= 1, "[ERROR CONFIG]: make sure block_size >= sparsity_factor" |
|
|
|
|
|
class BaseSelfAttention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
embed_dim, |
|
num_heads, |
|
dropout=0.0, |
|
is_decoder=False, |
|
bias=True, |
|
): |
|
|
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.head_dim = embed_dim // num_heads |
|
|
|
if (self.head_dim * num_heads) != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" |
|
f" and `num_heads`: {num_heads})." |
|
) |
|
self.scaling = self.head_dim ** -0.5 |
|
self.is_decoder = is_decoder |
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
|
|
def transpose_for_scores(self, x): |
|
new_x_shape = x.size()[:-1] + ( |
|
self.num_heads, |
|
self.head_dim, |
|
) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def reshape_output(self, context_layer): |
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,) |
|
return context_layer.view(*new_context_layer_shape) |
|
|
|
def project_QKV(self, hidden_states): |
|
|
|
query_layer = self.transpose_for_scores(self.q_proj(hidden_states)) |
|
key_layer = self.transpose_for_scores(self.k_proj(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.v_proj(hidden_states)) |
|
return query_layer, key_layer, value_layer |
|
|
|
|
|
class BaseAttentionProduct(nn.Module): |
|
|
|
def __init__(self, config): |
|
""" |
|
Compute attention: softmax(Q @ K.T) @ V |
|
""" |
|
super().__init__() |
|
self.dropout = nn.Dropout(config.attention_dropout) |
|
|
|
def forward(self, query_layer, key_layer, value_layer, attention_mask=None): |
|
|
|
d = query_layer.shape[-1] |
|
|
|
|
|
attention_scores = query_layer @ key_layer.transpose(-1, -2) / math.sqrt(d) |
|
|
|
del query_layer |
|
del key_layer |
|
|
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
del attention_mask |
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
|
|
|
|
context_layer = self.dropout(attention_probs) @ value_layer |
|
|
|
return context_layer |
|
|
|
|
|
class LSGAttentionProduct(nn.Module): |
|
|
|
def __init__(self, config, block_size=None, sparse_block_size=None, sparsity_factor=4): |
|
""" |
|
Compute block or overlapping blocks attention products |
|
""" |
|
super().__init__() |
|
|
|
self.block_size = block_size |
|
self.sparse_block_size = sparse_block_size |
|
self.sparsity_factor = sparsity_factor |
|
|
|
if self.block_size is None: |
|
self.block_size = config.block_size |
|
|
|
if self.sparse_block_size is None: |
|
self.sparse_block_size = config.sparse_block_size |
|
|
|
|
|
self.local_shapes = (self.block_size*3, self.block_size) |
|
if self.sparse_block_size and self.sparsity_factor > 0: |
|
self.sparse_shapes = (self.sparse_block_size*3, self.block_size//self.sparsity_factor) |
|
|
|
self.attention = BaseAttentionProduct(config) |
|
|
|
def build_lsg_inputs(self, hidden_states, sparse_hidden_states, global_hidden_states, is_attn_mask=False): |
|
|
|
|
|
local_hidden_states = self.reshape_to_local_block(hidden_states, is_attn_mask) |
|
del hidden_states |
|
|
|
|
|
if sparse_hidden_states is not None: |
|
sparse_hidden_states = self.reshape_to_sparse_block(sparse_hidden_states, is_attn_mask) |
|
|
|
return self.cat_global_sparse_local_tokens(global_hidden_states, sparse_hidden_states, local_hidden_states) |
|
|
|
def forward( |
|
self, |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
attention_mask=None, |
|
sparse_key=None, |
|
sparse_value=None, |
|
sparse_mask=None, |
|
global_key=None, |
|
global_value=None, |
|
global_mask=None |
|
): |
|
|
|
|
|
n, h, t, d = query_layer.size() |
|
n_blocks = t // self.block_size |
|
assert t % self.block_size == 0 |
|
|
|
key_layer = self.build_lsg_inputs( |
|
key_layer, |
|
sparse_key, |
|
global_key |
|
) |
|
del sparse_key |
|
del global_key |
|
|
|
value_layer = self.build_lsg_inputs( |
|
value_layer, |
|
sparse_value, |
|
global_value |
|
) |
|
del sparse_value |
|
del global_value |
|
|
|
attention_mask = self.build_lsg_inputs( |
|
attention_mask, |
|
sparse_mask, |
|
global_mask.transpose(-1, -2), |
|
is_attn_mask=True |
|
).transpose(-1, -2) |
|
del sparse_mask |
|
del global_mask |
|
|
|
|
|
|
|
context_layer = self.attention( |
|
query_layer=self.chunk(query_layer, n_blocks), |
|
key_layer=key_layer, |
|
value_layer=value_layer, |
|
attention_mask=attention_mask |
|
) |
|
|
|
return context_layer.reshape(n, h, -1, d) |
|
|
|
def reshape_to_local_block(self, hidden_states, is_attn_mask=False): |
|
|
|
size, step = self.local_shapes |
|
s = (size - step) // 2 |
|
|
|
|
|
if is_attn_mask: |
|
pad_value = torch.finfo(hidden_states.dtype).min |
|
hidden_states = hidden_states.transpose(-1, -2) |
|
else: |
|
pad_value = 0 |
|
|
|
hidden_states = torch.nn.functional.pad( |
|
hidden_states.transpose(-1, -2), |
|
pad=(s, s), |
|
value=pad_value |
|
).transpose(-1, -2) |
|
|
|
|
|
hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2) |
|
|
|
return hidden_states |
|
|
|
def reshape_to_sparse_block(self, hidden_states, is_attn_mask=False): |
|
|
|
size, step = self.sparse_shapes |
|
|
|
|
|
odd_offset = (step % 2) |
|
|
|
|
|
size = size*2 |
|
s = (size - step) // 2 + odd_offset |
|
|
|
|
|
if is_attn_mask: |
|
pad_value = torch.finfo(hidden_states.dtype).min |
|
hidden_states = hidden_states.transpose(-1, -2) |
|
else: |
|
pad_value = 0 |
|
|
|
hidden_states = torch.nn.functional.pad( |
|
hidden_states.transpose(-1, -2), |
|
pad=(s, s), |
|
value=pad_value |
|
).transpose(-1, -2) |
|
|
|
|
|
hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2) |
|
|
|
|
|
if odd_offset: |
|
hidden_states = hidden_states[..., :-1, :, :] |
|
|
|
|
|
u = (size - self.block_size * 3 // self.sparsity_factor) // 2 + odd_offset |
|
s = self.sparse_block_size |
|
|
|
u_ = u + odd_offset |
|
return torch.cat([hidden_states[..., u-s:u, :], hidden_states[..., -u_:-u_+s, :]], dim=-2) |
|
|
|
def cat_global_sparse_local_tokens(self, x_global, x_sparse=None, x_local=None, dim=-2): |
|
|
|
n, h, b, t, d = x_local.size() |
|
x_global = x_global.unsqueeze(-3).expand(-1, -1, b, -1, -1) |
|
if x_sparse is not None: |
|
return torch.cat([x_global, x_sparse, x_local], dim=dim) |
|
return torch.cat([x_global, x_local], dim=dim) |
|
|
|
def chunk(self, x, n_blocks): |
|
|
|
t, d = x.size()[-2:] |
|
return x.reshape(*x.size()[:-2], n_blocks, -1, d) |
|
|
|
|
|
class LSGPegasusEncoderAttention(BaseSelfAttention): |
|
''' |
|
Compute local attention with overlapping blocs |
|
Use global attention for tokens with highest norm |
|
''' |
|
def __init__( |
|
self, |
|
config, |
|
embed_dim, |
|
num_heads, |
|
dropout |
|
): |
|
|
|
super().__init__(embed_dim, num_heads, dropout) |
|
|
|
self.block_size = config.block_size |
|
self.sparse_block_size = config.sparse_block_size |
|
self.num_global_tokens = config.num_global_tokens |
|
self.sparsity_factor = config.sparsity_factor |
|
|
|
self.attention = LSGAttentionProduct( |
|
config, |
|
block_size=config.block_size, |
|
sparse_block_size=config.sparse_block_size, |
|
sparsity_factor=self.sparsity_factor, |
|
) |
|
|
|
self.full_attention = BaseAttentionProduct(config) |
|
|
|
sparse_functions = { |
|
"norm": self.get_sparse_tokens_with_norm, |
|
"pooling": self.get_sparse_tokens_with_pooling, |
|
"lsh": self.get_sparse_tokens_with_lsh, |
|
"stride": self.get_sparse_tokens_with_stride, |
|
"block_stride": self.get_sparse_tokens_with_block_stride, |
|
} |
|
|
|
self.sparsity_type = config.sparsity_type |
|
self.get_sparse_elements = sparse_functions.get(self.sparsity_type, lambda x, y, z: (None, None, None)) |
|
|
|
if config.sparsity_type == "lsh": |
|
self.lsh_num_pre_rounds = config.lsh_num_pre_rounds |
|
|
|
def get_sparse_tokens_with_norm(self, keys, values, mask): |
|
|
|
if self.sparsity_factor == 1: |
|
return keys, values, mask.expand(-1, keys.size()[1], -1, -1) |
|
|
|
with torch.no_grad(): |
|
|
|
block_size = min(self.block_size, self.sparse_block_size) |
|
key_norm = keys.detach().norm(dim=-1, keepdim=True) |
|
key_norm = key_norm * ~mask.transpose(-1, -2).bool() |
|
key_norm = self.chunk(key_norm, block_size) |
|
|
|
n, h, b, t, d = key_norm.size() |
|
|
|
idx = key_norm.argsort(dim=-2) |
|
del key_norm |
|
idx += (torch.arange(b, device=keys.device)*t).reshape(1, 1, b, 1, 1) |
|
|
|
split = (t - block_size // self.sparsity_factor, block_size // self.sparsity_factor) |
|
sparse_idx = idx.split(split, -2)[-1].reshape(n, h, -1, 1) |
|
|
|
d = keys.size()[-1] |
|
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) |
|
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) |
|
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2) |
|
|
|
return keys, values, mask |
|
|
|
def get_sparse_tokens_with_pooling(self, keys, values, mask): |
|
|
|
if self.sparsity_factor == 1: |
|
return keys, values, mask.expand(-1, keys.size()[1], -1, -1) |
|
|
|
keys = self.chunk(keys, self.sparsity_factor) |
|
values = self.chunk(values, self.sparsity_factor) |
|
|
|
n, h, b, t, d = keys.size() |
|
mask = mask.reshape(n, 1, b, 1, t) |
|
mask = ~mask.transpose(-1, -2).bool() |
|
|
|
keys = keys * mask |
|
values = values * mask |
|
|
|
mask = mask.sum(dim=-2) |
|
keys = keys.sum(dim=-2) / (mask + 1e-6) |
|
values = values.sum(dim=-2) / (mask + 1e-6) |
|
|
|
mask = (1. - mask.clamp(0, 1)) * torch.finfo(mask.dtype).min |
|
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2) |
|
|
|
def get_sparse_tokens_with_stride(self, keys, values, mask): |
|
|
|
if self.sparsity_factor == 1: |
|
return keys, values, mask.expand(-1, keys.size()[1], -1, -1) |
|
|
|
n, h, t, d = keys.size() |
|
sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) * self.sparsity_factor |
|
sparse_idx = sparse_idx.reshape(1, 1, -1, 1) + (torch.arange(h, device=keys.device) % self.sparsity_factor).reshape(1, h, 1, 1) |
|
sparse_idx = sparse_idx.expand(n, h, -1, 1) |
|
|
|
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) |
|
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) |
|
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2) |
|
|
|
return keys, values, mask |
|
|
|
def get_sparse_tokens_with_block_stride(self, keys, values, mask): |
|
|
|
if self.sparsity_factor == 1: |
|
return keys, values, mask.expand(-1, keys.size()[1], -1, -1) |
|
|
|
n, h, t, d = keys.size() |
|
|
|
t, b = self.block_size, t // self.block_size |
|
sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) |
|
sparse_idx = sparse_idx.reshape(1, 1, 1, -1, 1) + torch.arange(h, device=keys.device).reshape(1, h, 1, 1, 1) * (t // self.sparsity_factor) |
|
sparse_idx = (sparse_idx % t) |
|
sparse_idx = sparse_idx + torch.arange(b, device=keys.device).reshape(1, 1, -1, 1, 1) * t |
|
sparse_idx = sparse_idx.reshape(1, h, -1, 1).expand(n, h, -1, 1) |
|
|
|
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) |
|
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) |
|
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2) |
|
|
|
return keys, values, mask |
|
|
|
def get_sparse_tokens_with_lsh(self, keys, values, mask): |
|
|
|
if self.sparsity_factor == 1: |
|
return keys, values, mask.expand(-1, keys.size()[1], -1, -1) |
|
|
|
block_size = min(self.block_size, self.sparse_block_size) |
|
keys = self.chunk(keys, block_size) |
|
values = self.chunk(values, block_size) |
|
|
|
n, h, b, t, d = keys.size() |
|
mask = mask.reshape(n, 1, b, 1, t) |
|
mask = ~mask.transpose(-1, -2).bool() |
|
|
|
keys = keys * mask |
|
values = values * mask |
|
mask = mask.expand(-1, h, -1, -1, -1).float() |
|
|
|
extra_factor = 1 |
|
|
|
for _ in range(self.lsh_num_pre_rounds): |
|
keys, values, mask = self.lsh_round(keys, values, mask, t*extra_factor) |
|
|
|
keys, values, mask = self.lsh_round(keys, values, mask, t//self.sparsity_factor) |
|
keys /= mask + 1e-8 |
|
values /= mask + 1e-8 |
|
|
|
mask = (1. - mask.clamp(0, 1)) * torch.finfo(mask.dtype).min |
|
|
|
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.transpose(-1, -2).reshape(n, h, 1, -1) |
|
|
|
def lsh_round(self, keys, values, mask, output_size): |
|
|
|
with torch.no_grad(): |
|
|
|
n_hashes = output_size // 2 |
|
n, h, b, t, d = keys.size() |
|
binary_mask = mask.clamp(0, 1) |
|
|
|
indexes = (torch.nn.functional.normalize(keys, dim=-1) * binary_mask) @ torch.randn(1, h, 1, d, n_hashes, device=keys.device) |
|
indexes = torch.cat([indexes, -indexes], dim=-1).argmax(dim=-1, keepdim=True) |
|
|
|
n, h, b, t, d = keys.size() |
|
|
|
x_ = torch.zeros(n, h, b, output_size, d, device=keys.device) |
|
mask_ = torch.zeros(n, h, b, output_size, 1, device=keys.device) |
|
keys = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=keys) |
|
values = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=values) |
|
mask = torch.scatter_add(mask_, dim=-2, index=indexes, src=mask) |
|
|
|
return keys[..., :output_size, :], values[..., :output_size, :], mask[..., :output_size, :] |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
layer_head_mask=None, |
|
output_attentions=False |
|
): |
|
|
|
query_layer, key_layer, value_layer = self.project_QKV(hidden_states) |
|
outputs = self.not_causal_forward( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
attention_mask=attention_mask[:, :, :1, :], |
|
head_mask=layer_head_mask, |
|
output_attentions=output_attentions |
|
) |
|
|
|
return self.out_proj(outputs), None, None |
|
|
|
def not_causal_forward( |
|
self, |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
attention_mask=None, |
|
head_mask=None, |
|
output_attentions=False, |
|
): |
|
|
|
n, h, t, d = query_layer.size() |
|
|
|
|
|
attention_mask = torch.nn.functional.pad(attention_mask, (self.num_global_tokens, 0), value=0) |
|
|
|
|
|
if t <= 2 * self.block_size + self.num_global_tokens: |
|
context_layer = self.full_attention( |
|
query_layer=query_layer, |
|
key_layer=key_layer, |
|
value_layer=value_layer, |
|
attention_mask=attention_mask |
|
) |
|
|
|
if head_mask is not None: |
|
context_layer = context_layer * head_mask[:, :, :1, :1] |
|
return self.reshape_output(context_layer) |
|
|
|
|
|
split = (self.num_global_tokens, t - self.num_global_tokens) |
|
global_query, query_layer = query_layer.split(split, dim=-2) |
|
|
|
|
|
bos = self.full_attention( |
|
query_layer=global_query, |
|
key_layer=key_layer, |
|
value_layer=value_layer, |
|
attention_mask=attention_mask |
|
) |
|
|
|
|
|
global_key, key_layer = key_layer.split(split, dim=-2) |
|
global_value, value_layer = value_layer.split(split, dim=-2) |
|
global_mask, attention_mask = attention_mask.split(split, dim=-1) |
|
|
|
n, h, t, d = key_layer.size() |
|
|
|
|
|
sparse_key, sparse_value, sparse_mask = (None, None, None) |
|
|
|
if self.sparse_block_size and self.sparsity_factor > 0: |
|
sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(key_layer, value_layer, attention_mask) |
|
|
|
|
|
attention_mask = attention_mask.expand(-1, h, -1, -1) |
|
global_mask = global_mask.expand(-1, h, -1, -1) |
|
|
|
|
|
context_layer = self.attention( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
attention_mask, |
|
sparse_key=sparse_key, |
|
sparse_value=sparse_value, |
|
sparse_mask=sparse_mask, |
|
global_key=global_key, |
|
global_value=global_value, |
|
global_mask=global_mask |
|
) |
|
|
|
|
|
context_layer = torch.cat([bos, context_layer], dim=-2) |
|
if head_mask is not None: |
|
context_layer = context_layer * head_mask[:, :, :1, :1] |
|
context_layer = self.reshape_output(context_layer) |
|
|
|
return context_layer |
|
|
|
def chunk(self, x, chunk_size): |
|
|
|
n, h, t, d = x.size() |
|
return x.reshape(n, h, -1, chunk_size, d) |
|
|
|
|
|
|
|
class LSGPegasusSinusoidalPositionalEmbedding(nn.Embedding): |
|
"""This module produces sinusoidal positional embeddings of any length.""" |
|
|
|
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): |
|
super().__init__(num_positions, embedding_dim) |
|
self.weight = self._init_weight(self.weight) |
|
|
|
@staticmethod |
|
def _init_weight(out: nn.Parameter): |
|
""" |
|
Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in |
|
the 2nd half of the vector. [dim // 2:] |
|
""" |
|
n_pos, dim = out.shape |
|
position_enc = np.array( |
|
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] |
|
) |
|
out.requires_grad = False |
|
sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1 |
|
out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) |
|
out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) |
|
out.detach_() |
|
return out |
|
|
|
@torch.no_grad() |
|
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0): |
|
"""`input_ids_shape` is expected to be [bsz x seqlen].""" |
|
bsz, seq_len = input_ids_shape[:2] |
|
positions = torch.arange( |
|
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device |
|
) |
|
return super().forward(positions) |
|
|
|
|
|
|
|
class LSGPegasusEncoderLayer(PegasusEncoderLayer): |
|
|
|
def __init__(self, config: LSGPegasusConfig): |
|
|
|
super().__init__(config) |
|
self.self_attn = LSGPegasusEncoderAttention( |
|
config=config, |
|
embed_dim=self.embed_dim, |
|
num_heads=config.encoder_attention_heads, |
|
dropout=config.attention_dropout, |
|
) |
|
|
|
|
|
|
|
class LSGPegasusDecoderLayer(PegasusDecoderLayer): |
|
|
|
def __init__(self, config: LSGPegasusConfig): |
|
|
|
super().__init__(config) |
|
|
|
|
|
class LSGPegasusPreTrainedModel(PegasusPreTrainedModel): |
|
|
|
config_class = LSGPegasusConfig |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (PegasusDecoder, PegasusEncoder, LSGPegasusDecoder, LSGPegasusEncoder)): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class LSGPegasusEncoder(LSGPegasusPreTrainedModel, PegasusEncoder): |
|
""" |
|
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a |
|
:class:`PegasusEncoderLayer`. |
|
Args: |
|
config: PegasusConfig |
|
embed_tokens (nn.Embedding): output embedding |
|
""" |
|
|
|
def __init__(self, config: LSGPegasusConfig, embed_tokens: Optional[nn.Embedding] = None): |
|
|
|
LSGPegasusPreTrainedModel.__init__(self, config) |
|
self.dropout = config.dropout |
|
self.layerdrop = config.encoder_layerdrop |
|
|
|
embed_dim = config.d_model |
|
self.padding_idx = config.pad_token_id |
|
self.max_source_positions = config.max_position_embeddings |
|
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 |
|
|
|
if embed_tokens is not None: |
|
self.embed_tokens = embed_tokens |
|
else: |
|
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) |
|
|
|
self.embed_positions = LSGPegasusSinusoidalPositionalEmbedding( |
|
config.max_position_embeddings, |
|
embed_dim, |
|
self.padding_idx, |
|
) |
|
self.layers = nn.ModuleList([LSGPegasusEncoderLayer(config) for _ in range(config.encoder_layers)]) |
|
self.layer_norm = nn.LayerNorm(config.d_model) |
|
|
|
|
|
assert hasattr(config, "num_global_tokens") |
|
self.num_global_tokens = config.num_global_tokens |
|
self.pad_idx = config.pad_token_id |
|
|
|
assert hasattr(config, "block_size") and hasattr(config, "adaptive") |
|
self.block_size = config.block_size |
|
self.adaptive = config.adaptive |
|
self.mask_first_token = config.mask_first_token |
|
self.pool_with_global = config.pool_with_global |
|
self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder |
|
|
|
self.global_embeddings = nn.Embedding(512, embedding_dim=config.d_model) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.init_weights() |
|
|
|
def resize_position_embeddings(self, new_num_position_embeddings: int): |
|
""" |
|
Resizes position embeddings matrix of the model if :obj:`new_num_position_embeddings != |
|
config.max_position_embeddings`. |
|
Arguments: |
|
new_num_position_embeddings (:obj:`int`): |
|
The number of new position embeddings. If position embeddings are learned, increasing the size will add |
|
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If |
|
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will |
|
add correct vectors at the end following the position encoding algorithm, whereas reducing the size |
|
will remove vectors from the end. |
|
""" |
|
logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...") |
|
self.config.max_position_embeddings = new_num_position_embeddings |
|
|
|
self.embed_positions = LSGPegasusSinusoidalPositionalEmbedding( |
|
self.config.max_position_embeddings, |
|
self.config.d_model, |
|
self.padding_idx, |
|
) |
|
self.embed_positions.to(self.device) |
|
|
|
def forward(self, |
|
input_ids=None, |
|
attention_mask=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None |
|
): |
|
|
|
inputs_ = input_ids if input_ids is not None else inputs_embeds |
|
n, t = inputs_.size()[:2] |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(n, t, device=inputs_.device, dtype=inputs_.dtype) |
|
if self.mask_first_token: |
|
attention_mask[:,0] = 0 |
|
|
|
b = self.block_size * 2 |
|
pad = t % self.block_size |
|
|
|
|
|
if self.adaptive and t > b and pad > 0: |
|
pad_length = self.block_size - pad |
|
if input_ids is not None: |
|
input_ids = torch.nn.functional.pad(input_ids, (0, pad_length), value=self.pad_idx) |
|
else: |
|
inputs_embeds = torch.nn.functional.pad(inputs_embeds.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2) |
|
attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=0) |
|
|
|
n, t_ = attention_mask.size() |
|
|
|
encoder_outputs = self.forward_with_adaptive( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
context = encoder_outputs[0] |
|
diff = t - t_ |
|
|
|
if self.pass_global_tokens_to_decoder: |
|
offset = self.num_global_tokens |
|
else: |
|
if self.pool_with_global: |
|
context[:, self.num_global_tokens] = context[:, 0] |
|
context = context[..., self.num_global_tokens:, :] |
|
offset = 0 |
|
|
|
|
|
if diff < 0: |
|
context = context[:, :t + offset] |
|
|
|
if return_dict: |
|
encoder_outputs.last_hidden_state = context |
|
else: |
|
encoder_outputs = (context, ) + encoder_outputs[1:] |
|
|
|
return encoder_outputs |
|
|
|
def forward_with_adaptive( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale |
|
|
|
embed_pos = self.embed_positions(input_shape) |
|
hidden_states = inputs_embeds + embed_pos |
|
|
|
|
|
n, t, d = hidden_states.size() |
|
global_idx = torch.arange(self.num_global_tokens, device=hidden_states.device).reshape(1, -1) |
|
hidden_states = torch.cat([self.global_embeddings(global_idx).expand(n, -1, -1), hidden_states], dim=-2) |
|
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
|
|
if head_mask is not None: |
|
assert head_mask.size()[0] == ( |
|
len(self.layers) |
|
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." |
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
dropout_probability = random.uniform(0, 1) |
|
if self.training and (dropout_probability < self.layerdrop): |
|
layer_outputs = (None, None) |
|
else: |
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(encoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
(head_mask[idx] if head_mask is not None else None), |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask, |
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None), |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
hidden_states = self.layer_norm(hidden_states) |
|
|
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions |
|
) |
|
|
|
|
|
class LSGPegasusDecoder(LSGPegasusPreTrainedModel, PegasusDecoder): |
|
""" |
|
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`PegasusDecoderLayer` |
|
Args: |
|
config: PegasusConfig |
|
embed_tokens (nn.Embedding): output embedding |
|
""" |
|
|
|
def __init__(self, config: LSGPegasusConfig, embed_tokens: Optional[nn.Embedding] = None): |
|
|
|
LSGPegasusPreTrainedModel.__init__(self, config) |
|
|
|
self.dropout = config.dropout |
|
self.layerdrop = config.decoder_layerdrop |
|
self.padding_idx = config.pad_token_id |
|
self.max_target_positions = config.max_position_embeddings |
|
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 |
|
self.adaptive = config.adaptive |
|
|
|
if embed_tokens is not None: |
|
self.embed_tokens = embed_tokens |
|
else: |
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) |
|
|
|
self.embed_positions = LSGPegasusSinusoidalPositionalEmbedding( |
|
config.max_position_embeddings, |
|
config.d_model, |
|
self.padding_idx, |
|
) |
|
self.layers = nn.ModuleList([LSGPegasusDecoderLayer(config) for _ in range(config.decoder_layers)]) |
|
self.layer_norm = nn.LayerNorm(config.d_model) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
class LSGPegasusModel(LSGPegasusPreTrainedModel, PegasusModel): |
|
|
|
def __init__(self, config: LSGPegasusConfig): |
|
|
|
LSGPegasusPreTrainedModel.__init__(self, config) |
|
|
|
padding_idx, vocab_size = config.pad_token_id, config.vocab_size |
|
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) |
|
self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder |
|
self.num_global_tokens = config.num_global_tokens |
|
self.encoder = LSGPegasusEncoder(config, self.shared) |
|
self.decoder = LSGPegasusDecoder(config, self.shared) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
decoder_input_ids=None, |
|
decoder_attention_mask=None, |
|
head_mask=None, |
|
decoder_head_mask=None, |
|
cross_attn_head_mask=None, |
|
encoder_outputs=None, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
decoder_inputs_embeds=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
Returns: |
|
Example:: |
|
>>> from transformers import PegasusTokenizer, PegasusModel |
|
>>> tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-large") |
|
>>> model = PegasusModel.from_pretrained("google/pegasus-large") |
|
>>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 |
|
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 |
|
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) |
|
>>> last_hidden_states = outputs.last_hidden_state |
|
""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if encoder_outputs is None: |
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
) |
|
|
|
|
|
if self.pass_global_tokens_to_decoder and attention_mask is not None: |
|
attention_mask = torch.nn.functional.pad(attention_mask, pad=(self.num_global_tokens, 0), value=1) |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
encoder_hidden_states=encoder_outputs[0], |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=decoder_inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if not return_dict: |
|
return decoder_outputs + encoder_outputs |
|
|
|
return Seq2SeqModelOutput( |
|
last_hidden_state=decoder_outputs.last_hidden_state, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class LSGPegasusForConditionalGeneration(LSGPegasusPreTrainedModel, PegasusForConditionalGeneration): |
|
|
|
base_model_prefix = "model" |
|
_keys_to_ignore_on_load_missing = [ |
|
r"final_logits_bias", |
|
r"encoder\.version", |
|
r"decoder\.version", |
|
r"lm_head\.weight", |
|
r"embed_positions\.weight", |
|
] |
|
|
|
def __init__(self, config: LSGPegasusConfig): |
|
LSGPegasusPreTrainedModel.__init__(self, config) |
|
self.model = LSGPegasusModel(config) |
|
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) |
|
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
|
|
class LSGPegasusDecoderWrapper(LSGPegasusPreTrainedModel): |
|
""" |
|
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is |
|
used in combination with the :class:`~transformers.EncoderDecoderModel` framework. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.decoder = LSGPegasusDecoder(config) |
|
|
|
def forward(self, *args, **kwargs): |
|
return self.decoder(*args, **kwargs) |
|
|
|
|
|
class LSGPegasusForCausalLM(LSGPegasusPreTrainedModel, PegasusForCausalLM): |
|
|
|
def __init__(self, config): |
|
|
|
LSGPegasusPreTrainedModel.__init__(self, config) |
|
config = copy.deepcopy(config) |
|
config.is_decoder = True |
|
config.is_encoder_decoder = False |
|
self.model = LSGPegasusDecoderWrapper(config) |
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def str_to_class(classname): |
|
return getattr(sys.modules[__name__], classname) |
|
|
|
|
|
try: |
|
LSGPegasusConfig.register_for_auto_class() |
|
for key, value in AUTO_MAP.items(): |
|
str_to_class(value.split(".")[-1]).register_for_auto_class(key) |
|
except: |
|
warn("AutoRegister isn't available, you'll have to manually copy modeling.py after .save_pretrained(...).") |
|
warn("Update to transformers >= 4.17.0 to fix.") |