File size: 1,338 Bytes
1372cf0
098244a
 
 
 
1372cf0
098244a
 
 
 
73fb255
098244a
a87a7a1
098244a
32a84c0
098244a
a87a7a1
32a84c0
a87a7a1
32a84c0
 
a87a7a1
 
 
32a84c0
a87a7a1
 
 
 
 
 
 
32a84c0
a87a7a1
32a84c0
a87a7a1
 
 
 
 
 
 
 
 
 
 
 
 
32a84c0
a87a7a1
 
 
 
 
 
 
32a84c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: other
datasets:
- Open-Orca/OpenOrca
- ehartford/wizard_vicuna_70k_unfiltered
tags:
- code
- prompt
- reverse prompt
widget:
- text: "The results on conditioned open-ended language generation are impressive, having shown to generalize to new tasks, handle code, or take non-text data as input. Besides the improved transformer architecture and massive unsupervised training data, better decoding methods have also played an important role.\n [REVERSED-PROMPT]  "
  example_title: "reverse prompt"

---

# core-prompt-reverser-opt-1.3b

This model is a fine-tuned version of [ss5](https://huggingface.co/ss5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2950
- Accuracy: 0.7084

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0

### Training results



### Framework versions

- Transformers 4.33.0.dev0
- Pytorch 2.1.0.dev20230605+cu121
- Datasets 2.14.4
- Tokenizers 0.13.3