cdactvm commited on
Commit
c9d1222
·
verified ·
1 Parent(s): 4adeaf1

End of training

Browse files
Files changed (1) hide show
  1. README.md +245 -195
README.md CHANGED
@@ -1,199 +1,249 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ base_model: facebook/w2v-bert-2.0
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: w2v_bert_malayalam_100125
11
+ results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # w2v_bert_malayalam_100125
18
+
19
+ This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.2922
22
+ - Wer: 0.2847
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 2
43
+ - eval_batch_size: 1
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 4
46
+ - total_train_batch_size: 8
47
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_steps: 500
50
+ - num_epochs: 5
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
56
+ |:-------------:|:------:|:-----:|:---------------:|:------:|
57
+ | 13.7406 | 0.0270 | 300 | 1.1859 | 0.8493 |
58
+ | 6.3024 | 0.0539 | 600 | 0.9225 | 0.6676 |
59
+ | 5.3208 | 0.0809 | 900 | 0.7547 | 0.6066 |
60
+ | 5.0544 | 0.1078 | 1200 | 0.7201 | 0.6010 |
61
+ | 4.552 | 0.1348 | 1500 | 0.6276 | 0.5619 |
62
+ | 4.0527 | 0.1617 | 1800 | 0.6411 | 0.5327 |
63
+ | 3.8443 | 0.1887 | 2100 | 0.6421 | 0.5384 |
64
+ | 3.7674 | 0.2156 | 2400 | 0.6330 | 0.5094 |
65
+ | 3.7184 | 0.2426 | 2700 | 0.5730 | 0.5052 |
66
+ | 3.567 | 0.2696 | 3000 | 0.5459 | 0.4992 |
67
+ | 3.633 | 0.2965 | 3300 | 0.5636 | 0.4906 |
68
+ | 3.473 | 0.3235 | 3600 | 0.5271 | 0.4986 |
69
+ | 3.3079 | 0.3504 | 3900 | 0.5346 | 0.4924 |
70
+ | 3.6181 | 0.3774 | 4200 | 0.5180 | 0.4706 |
71
+ | 3.3054 | 0.4043 | 4500 | 0.5266 | 0.4706 |
72
+ | 3.2021 | 0.4313 | 4800 | 0.5171 | 0.4714 |
73
+ | 3.237 | 0.4583 | 5100 | 0.4940 | 0.4442 |
74
+ | 3.2646 | 0.4852 | 5400 | 0.5097 | 0.4691 |
75
+ | 3.2935 | 0.5122 | 5700 | 0.5393 | 0.4513 |
76
+ | 3.2023 | 0.5391 | 6000 | 0.4942 | 0.4491 |
77
+ | 3.1896 | 0.5661 | 6300 | 0.4971 | 0.4706 |
78
+ | 3.169 | 0.5930 | 6600 | 0.4829 | 0.4387 |
79
+ | 3.1288 | 0.6200 | 6900 | 0.4699 | 0.4299 |
80
+ | 3.0414 | 0.6469 | 7200 | 0.4697 | 0.4202 |
81
+ | 3.1903 | 0.6739 | 7500 | 0.4547 | 0.4260 |
82
+ | 3.1618 | 0.7009 | 7800 | 0.4512 | 0.4496 |
83
+ | 2.8182 | 0.7278 | 8100 | 0.4548 | 0.4369 |
84
+ | 2.9933 | 0.7548 | 8400 | 0.4716 | 0.4215 |
85
+ | 2.8348 | 0.7817 | 8700 | 0.4551 | 0.4380 |
86
+ | 2.9557 | 0.8087 | 9000 | 0.4702 | 0.4429 |
87
+ | 2.9472 | 0.8356 | 9300 | 0.4360 | 0.4405 |
88
+ | 2.9094 | 0.8626 | 9600 | 0.4693 | 0.4278 |
89
+ | 3.0442 | 0.8895 | 9900 | 0.4419 | 0.4198 |
90
+ | 2.7861 | 0.9165 | 10200 | 0.4344 | 0.4079 |
91
+ | 2.9604 | 0.9435 | 10500 | 0.4338 | 0.4125 |
92
+ | 2.8824 | 0.9704 | 10800 | 0.4474 | 0.4136 |
93
+ | 2.9609 | 0.9974 | 11100 | 0.4267 | 0.4129 |
94
+ | 2.8458 | 1.0243 | 11400 | 0.4365 | 0.3914 |
95
+ | 2.9807 | 1.0512 | 11700 | 0.4217 | 0.3915 |
96
+ | 2.7052 | 1.0782 | 12000 | 0.4294 | 0.3914 |
97
+ | 2.7261 | 1.1051 | 12300 | 0.4059 | 0.3979 |
98
+ | 2.757 | 1.1321 | 12600 | 0.4055 | 0.3924 |
99
+ | 2.6792 | 1.1590 | 12900 | 0.4168 | 0.3943 |
100
+ | 2.6238 | 1.1860 | 13200 | 0.4132 | 0.4120 |
101
+ | 2.704 | 1.2130 | 13500 | 0.4135 | 0.3984 |
102
+ | 2.7817 | 1.2399 | 13800 | 0.4213 | 0.3953 |
103
+ | 2.7019 | 1.2669 | 14100 | 0.4136 | 0.3903 |
104
+ | 2.683 | 1.2938 | 14400 | 0.4008 | 0.3857 |
105
+ | 2.6341 | 1.3208 | 14700 | 0.3932 | 0.3921 |
106
+ | 2.8109 | 1.3477 | 15000 | 0.3920 | 0.3886 |
107
+ | 2.7188 | 1.3747 | 15300 | 0.4107 | 0.3775 |
108
+ | 2.787 | 1.4016 | 15600 | 0.4017 | 0.3832 |
109
+ | 2.5539 | 1.4286 | 15900 | 0.3919 | 0.3870 |
110
+ | 2.7399 | 1.4556 | 16200 | 0.4052 | 0.3787 |
111
+ | 2.6653 | 1.4825 | 16500 | 0.3994 | 0.3781 |
112
+ | 2.6334 | 1.5095 | 16800 | 0.3962 | 0.3804 |
113
+ | 2.6855 | 1.5364 | 17100 | 0.3904 | 0.3799 |
114
+ | 2.5878 | 1.5634 | 17400 | 0.3874 | 0.3738 |
115
+ | 2.6821 | 1.5903 | 17700 | 0.4038 | 0.3801 |
116
+ | 2.7367 | 1.6173 | 18000 | 0.3895 | 0.3786 |
117
+ | 2.5238 | 1.6442 | 18300 | 0.3802 | 0.3714 |
118
+ | 2.6262 | 1.6712 | 18600 | 0.3871 | 0.3735 |
119
+ | 2.6882 | 1.6982 | 18900 | 0.3718 | 0.3598 |
120
+ | 2.6244 | 1.7251 | 19200 | 0.3690 | 0.3702 |
121
+ | 2.5328 | 1.7521 | 19500 | 0.3749 | 0.3696 |
122
+ | 2.7317 | 1.7790 | 19800 | 0.3849 | 0.3671 |
123
+ | 2.7712 | 1.8060 | 20100 | 0.3799 | 0.3572 |
124
+ | 2.5236 | 1.8329 | 20400 | 0.3669 | 0.3586 |
125
+ | 2.5933 | 1.8599 | 20700 | 0.3695 | 0.3699 |
126
+ | 2.6017 | 1.8869 | 21000 | 0.3794 | 0.3608 |
127
+ | 2.6945 | 1.9138 | 21300 | 0.3683 | 0.3660 |
128
+ | 2.4709 | 1.9408 | 21600 | 0.3681 | 0.3566 |
129
+ | 2.3483 | 1.9677 | 21900 | 0.3668 | 0.3583 |
130
+ | 2.441 | 1.9947 | 22200 | 0.3765 | 0.3623 |
131
+ | 2.3229 | 2.0216 | 22500 | 0.3814 | 0.3570 |
132
+ | 2.4638 | 2.0485 | 22800 | 0.3653 | 0.3535 |
133
+ | 2.4375 | 2.0755 | 23100 | 0.3715 | 0.3556 |
134
+ | 2.449 | 2.1024 | 23400 | 0.3664 | 0.3539 |
135
+ | 2.3533 | 2.1294 | 23700 | 0.3648 | 0.3522 |
136
+ | 2.5918 | 2.1563 | 24000 | 0.3697 | 0.3495 |
137
+ | 2.2601 | 2.1833 | 24300 | 0.3645 | 0.3509 |
138
+ | 2.4091 | 2.2103 | 24600 | 0.3633 | 0.3481 |
139
+ | 2.5612 | 2.2372 | 24900 | 0.3947 | 0.3475 |
140
+ | 2.4217 | 2.2642 | 25200 | 0.3683 | 0.3538 |
141
+ | 2.4534 | 2.2911 | 25500 | 0.3564 | 0.3521 |
142
+ | 2.4084 | 2.3181 | 25800 | 0.3620 | 0.3489 |
143
+ | 2.3584 | 2.3450 | 26100 | 0.3761 | 0.3561 |
144
+ | 2.2511 | 2.3720 | 26400 | 0.3603 | 0.3495 |
145
+ | 2.4207 | 2.3989 | 26700 | 0.3563 | 0.3455 |
146
+ | 2.4695 | 2.4259 | 27000 | 0.3571 | 0.3428 |
147
+ | 2.6855 | 2.4529 | 27300 | 0.3468 | 0.3471 |
148
+ | 2.3552 | 2.4798 | 27600 | 0.3503 | 0.3436 |
149
+ | 2.3278 | 2.5068 | 27900 | 0.3561 | 0.3503 |
150
+ | 2.3505 | 2.5337 | 28200 | 0.3532 | 0.3504 |
151
+ | 2.472 | 2.5607 | 28500 | 0.3460 | 0.3463 |
152
+ | 2.3524 | 2.5876 | 28800 | 0.3551 | 0.3483 |
153
+ | 2.4979 | 2.6146 | 29100 | 0.3512 | 0.3322 |
154
+ | 2.3248 | 2.6416 | 29400 | 0.3572 | 0.3491 |
155
+ | 2.5329 | 2.6685 | 29700 | 0.3395 | 0.3474 |
156
+ | 2.4015 | 2.6955 | 30000 | 0.3545 | 0.3382 |
157
+ | 2.3657 | 2.7224 | 30300 | 0.3484 | 0.3422 |
158
+ | 2.3756 | 2.7494 | 30600 | 0.3436 | 0.3396 |
159
+ | 2.4377 | 2.7763 | 30900 | 0.3462 | 0.3300 |
160
+ | 2.4235 | 2.8033 | 31200 | 0.3405 | 0.3319 |
161
+ | 2.4171 | 2.8302 | 31500 | 0.3743 | 0.3426 |
162
+ | 2.2713 | 2.8572 | 31800 | 0.3443 | 0.3285 |
163
+ | 2.3465 | 2.8842 | 32100 | 0.3480 | 0.3441 |
164
+ | 2.2693 | 2.9111 | 32400 | 0.3538 | 0.3374 |
165
+ | 2.2837 | 2.9381 | 32700 | 0.3352 | 0.3316 |
166
+ | 2.2519 | 2.9650 | 33000 | 0.3453 | 0.3425 |
167
+ | 2.3385 | 2.9920 | 33300 | 0.3369 | 0.3328 |
168
+ | 2.4399 | 3.0189 | 33600 | 0.3369 | 0.3314 |
169
+ | 2.1657 | 3.0458 | 33900 | 0.3354 | 0.3210 |
170
+ | 2.1836 | 3.0728 | 34200 | 0.3418 | 0.3305 |
171
+ | 2.1411 | 3.0997 | 34500 | 0.3403 | 0.3274 |
172
+ | 2.1968 | 3.1267 | 34800 | 0.3431 | 0.3271 |
173
+ | 2.1438 | 3.1536 | 35100 | 0.3344 | 0.3203 |
174
+ | 2.2291 | 3.1806 | 35400 | 0.3370 | 0.3304 |
175
+ | 2.2565 | 3.2076 | 35700 | 0.3379 | 0.3211 |
176
+ | 2.2529 | 3.2345 | 36000 | 0.3323 | 0.3172 |
177
+ | 2.1685 | 3.2615 | 36300 | 0.3289 | 0.3204 |
178
+ | 2.0921 | 3.2884 | 36600 | 0.3380 | 0.3371 |
179
+ | 2.2647 | 3.3154 | 36900 | 0.3278 | 0.3212 |
180
+ | 2.1798 | 3.3423 | 37200 | 0.3404 | 0.3267 |
181
+ | 2.0501 | 3.3693 | 37500 | 0.3318 | 0.3171 |
182
+ | 2.1228 | 3.3963 | 37800 | 0.3377 | 0.3117 |
183
+ | 2.2038 | 3.4232 | 38100 | 0.3312 | 0.3161 |
184
+ | 2.113 | 3.4502 | 38400 | 0.3170 | 0.3131 |
185
+ | 2.3311 | 3.4771 | 38700 | 0.3291 | 0.3179 |
186
+ | 2.1042 | 3.5041 | 39000 | 0.3219 | 0.3159 |
187
+ | 2.2017 | 3.5310 | 39300 | 0.3449 | 0.3168 |
188
+ | 2.1555 | 3.5580 | 39600 | 0.3239 | 0.3091 |
189
+ | 2.0275 | 3.5849 | 39900 | 0.3214 | 0.3108 |
190
+ | 2.1272 | 3.6119 | 40200 | 0.3313 | 0.3141 |
191
+ | 2.1742 | 3.6389 | 40500 | 0.3145 | 0.3104 |
192
+ | 2.2524 | 3.6658 | 40800 | 0.3098 | 0.3073 |
193
+ | 2.3791 | 3.6928 | 41100 | 0.3129 | 0.3151 |
194
+ | 2.1903 | 3.7197 | 41400 | 0.3140 | 0.3086 |
195
+ | 2.1773 | 3.7467 | 41700 | 0.3170 | 0.3122 |
196
+ | 2.2465 | 3.7736 | 42000 | 0.3137 | 0.3113 |
197
+ | 2.152 | 3.8006 | 42300 | 0.3090 | 0.3050 |
198
+ | 2.0966 | 3.8275 | 42600 | 0.3133 | 0.3034 |
199
+ | 2.0236 | 3.8545 | 42900 | 0.3065 | 0.3053 |
200
+ | 2.2719 | 3.8815 | 43200 | 0.3177 | 0.3038 |
201
+ | 2.0735 | 3.9084 | 43500 | 0.3057 | 0.3036 |
202
+ | 2.0077 | 3.9354 | 43800 | 0.3083 | 0.2995 |
203
+ | 2.2148 | 3.9623 | 44100 | 0.3100 | 0.3061 |
204
+ | 1.9275 | 3.9893 | 44400 | 0.3193 | 0.3001 |
205
+ | 2.0617 | 4.0162 | 44700 | 0.3018 | 0.3014 |
206
+ | 1.97 | 4.0431 | 45000 | 0.2992 | 0.3017 |
207
+ | 2.0957 | 4.0701 | 45300 | 0.3084 | 0.3047 |
208
+ | 2.0003 | 4.0970 | 45600 | 0.3127 | 0.2997 |
209
+ | 2.0239 | 4.1240 | 45900 | 0.3080 | 0.2988 |
210
+ | 1.8299 | 4.1510 | 46200 | 0.3096 | 0.2993 |
211
+ | 2.0207 | 4.1779 | 46500 | 0.3116 | 0.2990 |
212
+ | 2.3016 | 4.2049 | 46800 | 0.2990 | 0.2965 |
213
+ | 2.0119 | 4.2318 | 47100 | 0.2991 | 0.2978 |
214
+ | 2.0965 | 4.2588 | 47400 | 0.3046 | 0.2969 |
215
+ | 2.0322 | 4.2857 | 47700 | 0.2995 | 0.2982 |
216
+ | 1.8958 | 4.3127 | 48000 | 0.3045 | 0.2984 |
217
+ | 2.0243 | 4.3396 | 48300 | 0.3046 | 0.2936 |
218
+ | 2.0465 | 4.3666 | 48600 | 0.3049 | 0.2937 |
219
+ | 1.9224 | 4.3936 | 48900 | 0.2986 | 0.2910 |
220
+ | 2.0303 | 4.4205 | 49200 | 0.3027 | 0.2925 |
221
+ | 1.9259 | 4.4475 | 49500 | 0.3035 | 0.2931 |
222
+ | 2.1682 | 4.4744 | 49800 | 0.3020 | 0.2921 |
223
+ | 1.9361 | 4.5014 | 50100 | 0.2984 | 0.2924 |
224
+ | 1.9593 | 4.5283 | 50400 | 0.2980 | 0.2887 |
225
+ | 2.0082 | 4.5553 | 50700 | 0.2959 | 0.2878 |
226
+ | 2.0995 | 4.5822 | 51000 | 0.2977 | 0.2886 |
227
+ | 1.9609 | 4.6092 | 51300 | 0.2950 | 0.2892 |
228
+ | 1.8096 | 4.6362 | 51600 | 0.2979 | 0.2890 |
229
+ | 1.8145 | 4.6631 | 51900 | 0.2978 | 0.2877 |
230
+ | 1.8261 | 4.6901 | 52200 | 0.2958 | 0.2871 |
231
+ | 1.8683 | 4.7170 | 52500 | 0.2939 | 0.2854 |
232
+ | 2.0299 | 4.7440 | 52800 | 0.2899 | 0.2851 |
233
+ | 2.0949 | 4.7709 | 53100 | 0.2916 | 0.2848 |
234
+ | 1.8456 | 4.7979 | 53400 | 0.2911 | 0.2854 |
235
+ | 1.9542 | 4.8249 | 53700 | 0.2932 | 0.2837 |
236
+ | 1.8429 | 4.8518 | 54000 | 0.2942 | 0.2866 |
237
+ | 1.9042 | 4.8788 | 54300 | 0.2939 | 0.2852 |
238
+ | 2.0831 | 4.9057 | 54600 | 0.2903 | 0.2848 |
239
+ | 1.8793 | 4.9327 | 54900 | 0.2912 | 0.2851 |
240
+ | 1.7786 | 4.9596 | 55200 | 0.2917 | 0.2850 |
241
+ | 1.9494 | 4.9866 | 55500 | 0.2922 | 0.2847 |
242
+
243
+
244
+ ### Framework versions
245
+
246
+ - Transformers 4.47.1
247
+ - Pytorch 2.5.1+cu124
248
+ - Datasets 3.2.0
249
+ - Tokenizers 0.21.0