cdreetz commited on
Commit
1ede62f
1 Parent(s): 3b220cd

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +188 -0
README.md ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: codeparrot-ds2
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # codeparrot-ds2
14
+
15
+ This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 1.0584
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 0.0005
37
+ - train_batch_size: 32
38
+ - eval_batch_size: 32
39
+ - seed: 42
40
+ - gradient_accumulation_steps: 8
41
+ - total_train_batch_size: 256
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: cosine
44
+ - lr_scheduler_warmup_steps: 200
45
+ - num_epochs: 1
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:-----:|:-----:|:---------------:|
51
+ | 2.2038 | 0.01 | 500 | 2.1062 |
52
+ | 2.0551 | 0.02 | 1000 | 2.0109 |
53
+ | 1.9622 | 0.02 | 1500 | 1.9219 |
54
+ | 1.9512 | 0.03 | 2000 | 1.8461 |
55
+ | 1.8817 | 0.04 | 2500 | 1.7903 |
56
+ | 1.8341 | 0.05 | 3000 | 1.7401 |
57
+ | 1.7877 | 0.05 | 3500 | 1.7022 |
58
+ | 1.7586 | 0.06 | 4000 | 1.6694 |
59
+ | 1.7271 | 0.07 | 4500 | 1.6457 |
60
+ | 1.7034 | 0.08 | 5000 | 1.6193 |
61
+ | 1.6756 | 0.08 | 5500 | 1.5978 |
62
+ | 1.6576 | 0.09 | 6000 | 1.5772 |
63
+ | 1.6377 | 0.1 | 6500 | 1.5611 |
64
+ | 1.6211 | 0.11 | 7000 | 1.5453 |
65
+ | 1.6033 | 0.11 | 7500 | 1.5317 |
66
+ | 1.591 | 0.12 | 8000 | 1.5193 |
67
+ | 1.5765 | 0.13 | 8500 | 1.5053 |
68
+ | 1.5661 | 0.14 | 9000 | 1.4966 |
69
+ | 1.5548 | 0.15 | 9500 | 1.4846 |
70
+ | 1.5429 | 0.15 | 10000 | 1.4729 |
71
+ | 1.5347 | 0.16 | 10500 | 1.4641 |
72
+ | 1.5215 | 0.17 | 11000 | 1.4557 |
73
+ | 1.5151 | 0.18 | 11500 | 1.4454 |
74
+ | 1.5059 | 0.18 | 12000 | 1.4381 |
75
+ | 1.499 | 0.19 | 12500 | 1.4288 |
76
+ | 1.4906 | 0.2 | 13000 | 1.4210 |
77
+ | 1.4849 | 0.21 | 13500 | 1.4143 |
78
+ | 1.4765 | 0.21 | 14000 | 1.4085 |
79
+ | 1.4708 | 0.22 | 14500 | 1.4026 |
80
+ | 1.4602 | 0.23 | 15000 | 1.3936 |
81
+ | 1.4533 | 0.24 | 15500 | 1.3896 |
82
+ | 1.4523 | 0.25 | 16000 | 1.3818 |
83
+ | 1.4415 | 0.25 | 16500 | 1.3748 |
84
+ | 1.4417 | 0.26 | 17000 | 1.3701 |
85
+ | 1.4311 | 0.27 | 17500 | 1.3645 |
86
+ | 1.4282 | 0.28 | 18000 | 1.3585 |
87
+ | 1.4223 | 0.28 | 18500 | 1.3531 |
88
+ | 1.4165 | 0.29 | 19000 | 1.3473 |
89
+ | 1.4105 | 0.3 | 19500 | 1.3419 |
90
+ | 1.3993 | 0.31 | 20000 | 1.3374 |
91
+ | 1.4034 | 0.31 | 20500 | 1.3322 |
92
+ | 1.3982 | 0.32 | 21000 | 1.3278 |
93
+ | 1.3951 | 0.33 | 21500 | 1.3225 |
94
+ | 1.3806 | 0.34 | 22000 | 1.3180 |
95
+ | 1.3781 | 0.34 | 22500 | 1.3121 |
96
+ | 1.3761 | 0.35 | 23000 | 1.3082 |
97
+ | 1.3662 | 0.36 | 23500 | 1.3038 |
98
+ | 1.3631 | 0.37 | 24000 | 1.2995 |
99
+ | 1.3549 | 0.38 | 24500 | 1.2955 |
100
+ | 1.3577 | 0.38 | 25000 | 1.2912 |
101
+ | 1.3498 | 0.39 | 25500 | 1.2851 |
102
+ | 1.3428 | 0.4 | 26000 | 1.2807 |
103
+ | 1.342 | 0.41 | 26500 | 1.2768 |
104
+ | 1.3365 | 0.41 | 27000 | 1.2720 |
105
+ | 1.3313 | 0.42 | 27500 | 1.2678 |
106
+ | 1.3309 | 0.43 | 28000 | 1.2629 |
107
+ | 1.3221 | 0.44 | 28500 | 1.2594 |
108
+ | 1.3214 | 0.44 | 29000 | 1.2558 |
109
+ | 1.3099 | 0.45 | 29500 | 1.2510 |
110
+ | 1.31 | 0.46 | 30000 | 1.2449 |
111
+ | 1.31 | 0.47 | 30500 | 1.2414 |
112
+ | 1.305 | 0.48 | 31000 | 1.2390 |
113
+ | 1.2975 | 0.48 | 31500 | 1.2358 |
114
+ | 1.2882 | 0.49 | 32000 | 1.2311 |
115
+ | 1.2831 | 0.5 | 32500 | 1.2251 |
116
+ | 1.2836 | 0.51 | 33000 | 1.2212 |
117
+ | 1.2817 | 0.51 | 33500 | 1.2178 |
118
+ | 1.2772 | 0.52 | 34000 | 1.2130 |
119
+ | 1.2651 | 0.53 | 34500 | 1.2080 |
120
+ | 1.2683 | 0.54 | 35000 | 1.2048 |
121
+ | 1.2581 | 0.54 | 35500 | 1.1999 |
122
+ | 1.263 | 0.55 | 36000 | 1.1972 |
123
+ | 1.255 | 0.56 | 36500 | 1.1924 |
124
+ | 1.2466 | 0.57 | 37000 | 1.1884 |
125
+ | 1.2448 | 0.57 | 37500 | 1.1860 |
126
+ | 1.2413 | 0.58 | 38000 | 1.1804 |
127
+ | 1.2362 | 0.59 | 38500 | 1.1782 |
128
+ | 1.2309 | 0.6 | 39000 | 1.1732 |
129
+ | 1.2289 | 0.61 | 39500 | 1.1687 |
130
+ | 1.2208 | 0.61 | 40000 | 1.1649 |
131
+ | 1.2225 | 0.62 | 40500 | 1.1605 |
132
+ | 1.2178 | 0.63 | 41000 | 1.1555 |
133
+ | 1.208 | 0.64 | 41500 | 1.1533 |
134
+ | 1.2069 | 0.64 | 42000 | 1.1490 |
135
+ | 1.206 | 0.65 | 42500 | 1.1453 |
136
+ | 1.2013 | 0.66 | 43000 | 1.1414 |
137
+ | 1.2003 | 0.67 | 43500 | 1.1374 |
138
+ | 1.1867 | 0.67 | 44000 | 1.1337 |
139
+ | 1.187 | 0.68 | 44500 | 1.1302 |
140
+ | 1.188 | 0.69 | 45000 | 1.1270 |
141
+ | 1.179 | 0.7 | 45500 | 1.1237 |
142
+ | 1.1866 | 0.71 | 46000 | 1.1204 |
143
+ | 1.173 | 0.71 | 46500 | 1.1173 |
144
+ | 1.1706 | 0.72 | 47000 | 1.1134 |
145
+ | 1.1645 | 0.73 | 47500 | 1.1099 |
146
+ | 1.1641 | 0.74 | 48000 | 1.1063 |
147
+ | 1.1623 | 0.74 | 48500 | 1.1032 |
148
+ | 1.1561 | 0.75 | 49000 | 1.1006 |
149
+ | 1.1531 | 0.76 | 49500 | 1.0977 |
150
+ | 1.1569 | 0.77 | 50000 | 1.0950 |
151
+ | 1.1505 | 0.77 | 50500 | 1.0927 |
152
+ | 1.1473 | 0.78 | 51000 | 1.0902 |
153
+ | 1.1428 | 0.79 | 51500 | 1.0870 |
154
+ | 1.1412 | 0.8 | 52000 | 1.0844 |
155
+ | 1.1452 | 0.8 | 52500 | 1.0823 |
156
+ | 1.1391 | 0.81 | 53000 | 1.0805 |
157
+ | 1.1329 | 0.82 | 53500 | 1.0783 |
158
+ | 1.1295 | 0.83 | 54000 | 1.0764 |
159
+ | 1.125 | 0.84 | 54500 | 1.0746 |
160
+ | 1.1295 | 0.84 | 55000 | 1.0730 |
161
+ | 1.1247 | 0.85 | 55500 | 1.0711 |
162
+ | 1.1225 | 0.86 | 56000 | 1.0696 |
163
+ | 1.1235 | 0.87 | 56500 | 1.0680 |
164
+ | 1.1192 | 0.87 | 57000 | 1.0670 |
165
+ | 1.1189 | 0.88 | 57500 | 1.0654 |
166
+ | 1.1196 | 0.89 | 58000 | 1.0646 |
167
+ | 1.1152 | 0.9 | 58500 | 1.0635 |
168
+ | 1.1133 | 0.9 | 59000 | 1.0628 |
169
+ | 1.1126 | 0.91 | 59500 | 1.0619 |
170
+ | 1.1142 | 0.92 | 60000 | 1.0610 |
171
+ | 1.1112 | 0.93 | 60500 | 1.0605 |
172
+ | 1.1137 | 0.93 | 61000 | 1.0599 |
173
+ | 1.1127 | 0.94 | 61500 | 1.0595 |
174
+ | 1.1111 | 0.95 | 62000 | 1.0592 |
175
+ | 1.1121 | 0.96 | 62500 | 1.0588 |
176
+ | 1.1114 | 0.97 | 63000 | 1.0587 |
177
+ | 1.1121 | 0.97 | 63500 | 1.0585 |
178
+ | 1.1078 | 0.98 | 64000 | 1.0584 |
179
+ | 1.1104 | 0.99 | 64500 | 1.0584 |
180
+ | 1.1057 | 1.0 | 65000 | 1.0584 |
181
+
182
+
183
+ ### Framework versions
184
+
185
+ - Transformers 4.30.2
186
+ - Pytorch 1.13.1
187
+ - Datasets 2.13.1
188
+ - Tokenizers 0.13.3