update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: codeparrot-ds2
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# codeparrot-ds2
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.0584
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 0.0005
|
37 |
+
- train_batch_size: 32
|
38 |
+
- eval_batch_size: 32
|
39 |
+
- seed: 42
|
40 |
+
- gradient_accumulation_steps: 8
|
41 |
+
- total_train_batch_size: 256
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: cosine
|
44 |
+
- lr_scheduler_warmup_steps: 200
|
45 |
+
- num_epochs: 1
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
51 |
+
| 2.2038 | 0.01 | 500 | 2.1062 |
|
52 |
+
| 2.0551 | 0.02 | 1000 | 2.0109 |
|
53 |
+
| 1.9622 | 0.02 | 1500 | 1.9219 |
|
54 |
+
| 1.9512 | 0.03 | 2000 | 1.8461 |
|
55 |
+
| 1.8817 | 0.04 | 2500 | 1.7903 |
|
56 |
+
| 1.8341 | 0.05 | 3000 | 1.7401 |
|
57 |
+
| 1.7877 | 0.05 | 3500 | 1.7022 |
|
58 |
+
| 1.7586 | 0.06 | 4000 | 1.6694 |
|
59 |
+
| 1.7271 | 0.07 | 4500 | 1.6457 |
|
60 |
+
| 1.7034 | 0.08 | 5000 | 1.6193 |
|
61 |
+
| 1.6756 | 0.08 | 5500 | 1.5978 |
|
62 |
+
| 1.6576 | 0.09 | 6000 | 1.5772 |
|
63 |
+
| 1.6377 | 0.1 | 6500 | 1.5611 |
|
64 |
+
| 1.6211 | 0.11 | 7000 | 1.5453 |
|
65 |
+
| 1.6033 | 0.11 | 7500 | 1.5317 |
|
66 |
+
| 1.591 | 0.12 | 8000 | 1.5193 |
|
67 |
+
| 1.5765 | 0.13 | 8500 | 1.5053 |
|
68 |
+
| 1.5661 | 0.14 | 9000 | 1.4966 |
|
69 |
+
| 1.5548 | 0.15 | 9500 | 1.4846 |
|
70 |
+
| 1.5429 | 0.15 | 10000 | 1.4729 |
|
71 |
+
| 1.5347 | 0.16 | 10500 | 1.4641 |
|
72 |
+
| 1.5215 | 0.17 | 11000 | 1.4557 |
|
73 |
+
| 1.5151 | 0.18 | 11500 | 1.4454 |
|
74 |
+
| 1.5059 | 0.18 | 12000 | 1.4381 |
|
75 |
+
| 1.499 | 0.19 | 12500 | 1.4288 |
|
76 |
+
| 1.4906 | 0.2 | 13000 | 1.4210 |
|
77 |
+
| 1.4849 | 0.21 | 13500 | 1.4143 |
|
78 |
+
| 1.4765 | 0.21 | 14000 | 1.4085 |
|
79 |
+
| 1.4708 | 0.22 | 14500 | 1.4026 |
|
80 |
+
| 1.4602 | 0.23 | 15000 | 1.3936 |
|
81 |
+
| 1.4533 | 0.24 | 15500 | 1.3896 |
|
82 |
+
| 1.4523 | 0.25 | 16000 | 1.3818 |
|
83 |
+
| 1.4415 | 0.25 | 16500 | 1.3748 |
|
84 |
+
| 1.4417 | 0.26 | 17000 | 1.3701 |
|
85 |
+
| 1.4311 | 0.27 | 17500 | 1.3645 |
|
86 |
+
| 1.4282 | 0.28 | 18000 | 1.3585 |
|
87 |
+
| 1.4223 | 0.28 | 18500 | 1.3531 |
|
88 |
+
| 1.4165 | 0.29 | 19000 | 1.3473 |
|
89 |
+
| 1.4105 | 0.3 | 19500 | 1.3419 |
|
90 |
+
| 1.3993 | 0.31 | 20000 | 1.3374 |
|
91 |
+
| 1.4034 | 0.31 | 20500 | 1.3322 |
|
92 |
+
| 1.3982 | 0.32 | 21000 | 1.3278 |
|
93 |
+
| 1.3951 | 0.33 | 21500 | 1.3225 |
|
94 |
+
| 1.3806 | 0.34 | 22000 | 1.3180 |
|
95 |
+
| 1.3781 | 0.34 | 22500 | 1.3121 |
|
96 |
+
| 1.3761 | 0.35 | 23000 | 1.3082 |
|
97 |
+
| 1.3662 | 0.36 | 23500 | 1.3038 |
|
98 |
+
| 1.3631 | 0.37 | 24000 | 1.2995 |
|
99 |
+
| 1.3549 | 0.38 | 24500 | 1.2955 |
|
100 |
+
| 1.3577 | 0.38 | 25000 | 1.2912 |
|
101 |
+
| 1.3498 | 0.39 | 25500 | 1.2851 |
|
102 |
+
| 1.3428 | 0.4 | 26000 | 1.2807 |
|
103 |
+
| 1.342 | 0.41 | 26500 | 1.2768 |
|
104 |
+
| 1.3365 | 0.41 | 27000 | 1.2720 |
|
105 |
+
| 1.3313 | 0.42 | 27500 | 1.2678 |
|
106 |
+
| 1.3309 | 0.43 | 28000 | 1.2629 |
|
107 |
+
| 1.3221 | 0.44 | 28500 | 1.2594 |
|
108 |
+
| 1.3214 | 0.44 | 29000 | 1.2558 |
|
109 |
+
| 1.3099 | 0.45 | 29500 | 1.2510 |
|
110 |
+
| 1.31 | 0.46 | 30000 | 1.2449 |
|
111 |
+
| 1.31 | 0.47 | 30500 | 1.2414 |
|
112 |
+
| 1.305 | 0.48 | 31000 | 1.2390 |
|
113 |
+
| 1.2975 | 0.48 | 31500 | 1.2358 |
|
114 |
+
| 1.2882 | 0.49 | 32000 | 1.2311 |
|
115 |
+
| 1.2831 | 0.5 | 32500 | 1.2251 |
|
116 |
+
| 1.2836 | 0.51 | 33000 | 1.2212 |
|
117 |
+
| 1.2817 | 0.51 | 33500 | 1.2178 |
|
118 |
+
| 1.2772 | 0.52 | 34000 | 1.2130 |
|
119 |
+
| 1.2651 | 0.53 | 34500 | 1.2080 |
|
120 |
+
| 1.2683 | 0.54 | 35000 | 1.2048 |
|
121 |
+
| 1.2581 | 0.54 | 35500 | 1.1999 |
|
122 |
+
| 1.263 | 0.55 | 36000 | 1.1972 |
|
123 |
+
| 1.255 | 0.56 | 36500 | 1.1924 |
|
124 |
+
| 1.2466 | 0.57 | 37000 | 1.1884 |
|
125 |
+
| 1.2448 | 0.57 | 37500 | 1.1860 |
|
126 |
+
| 1.2413 | 0.58 | 38000 | 1.1804 |
|
127 |
+
| 1.2362 | 0.59 | 38500 | 1.1782 |
|
128 |
+
| 1.2309 | 0.6 | 39000 | 1.1732 |
|
129 |
+
| 1.2289 | 0.61 | 39500 | 1.1687 |
|
130 |
+
| 1.2208 | 0.61 | 40000 | 1.1649 |
|
131 |
+
| 1.2225 | 0.62 | 40500 | 1.1605 |
|
132 |
+
| 1.2178 | 0.63 | 41000 | 1.1555 |
|
133 |
+
| 1.208 | 0.64 | 41500 | 1.1533 |
|
134 |
+
| 1.2069 | 0.64 | 42000 | 1.1490 |
|
135 |
+
| 1.206 | 0.65 | 42500 | 1.1453 |
|
136 |
+
| 1.2013 | 0.66 | 43000 | 1.1414 |
|
137 |
+
| 1.2003 | 0.67 | 43500 | 1.1374 |
|
138 |
+
| 1.1867 | 0.67 | 44000 | 1.1337 |
|
139 |
+
| 1.187 | 0.68 | 44500 | 1.1302 |
|
140 |
+
| 1.188 | 0.69 | 45000 | 1.1270 |
|
141 |
+
| 1.179 | 0.7 | 45500 | 1.1237 |
|
142 |
+
| 1.1866 | 0.71 | 46000 | 1.1204 |
|
143 |
+
| 1.173 | 0.71 | 46500 | 1.1173 |
|
144 |
+
| 1.1706 | 0.72 | 47000 | 1.1134 |
|
145 |
+
| 1.1645 | 0.73 | 47500 | 1.1099 |
|
146 |
+
| 1.1641 | 0.74 | 48000 | 1.1063 |
|
147 |
+
| 1.1623 | 0.74 | 48500 | 1.1032 |
|
148 |
+
| 1.1561 | 0.75 | 49000 | 1.1006 |
|
149 |
+
| 1.1531 | 0.76 | 49500 | 1.0977 |
|
150 |
+
| 1.1569 | 0.77 | 50000 | 1.0950 |
|
151 |
+
| 1.1505 | 0.77 | 50500 | 1.0927 |
|
152 |
+
| 1.1473 | 0.78 | 51000 | 1.0902 |
|
153 |
+
| 1.1428 | 0.79 | 51500 | 1.0870 |
|
154 |
+
| 1.1412 | 0.8 | 52000 | 1.0844 |
|
155 |
+
| 1.1452 | 0.8 | 52500 | 1.0823 |
|
156 |
+
| 1.1391 | 0.81 | 53000 | 1.0805 |
|
157 |
+
| 1.1329 | 0.82 | 53500 | 1.0783 |
|
158 |
+
| 1.1295 | 0.83 | 54000 | 1.0764 |
|
159 |
+
| 1.125 | 0.84 | 54500 | 1.0746 |
|
160 |
+
| 1.1295 | 0.84 | 55000 | 1.0730 |
|
161 |
+
| 1.1247 | 0.85 | 55500 | 1.0711 |
|
162 |
+
| 1.1225 | 0.86 | 56000 | 1.0696 |
|
163 |
+
| 1.1235 | 0.87 | 56500 | 1.0680 |
|
164 |
+
| 1.1192 | 0.87 | 57000 | 1.0670 |
|
165 |
+
| 1.1189 | 0.88 | 57500 | 1.0654 |
|
166 |
+
| 1.1196 | 0.89 | 58000 | 1.0646 |
|
167 |
+
| 1.1152 | 0.9 | 58500 | 1.0635 |
|
168 |
+
| 1.1133 | 0.9 | 59000 | 1.0628 |
|
169 |
+
| 1.1126 | 0.91 | 59500 | 1.0619 |
|
170 |
+
| 1.1142 | 0.92 | 60000 | 1.0610 |
|
171 |
+
| 1.1112 | 0.93 | 60500 | 1.0605 |
|
172 |
+
| 1.1137 | 0.93 | 61000 | 1.0599 |
|
173 |
+
| 1.1127 | 0.94 | 61500 | 1.0595 |
|
174 |
+
| 1.1111 | 0.95 | 62000 | 1.0592 |
|
175 |
+
| 1.1121 | 0.96 | 62500 | 1.0588 |
|
176 |
+
| 1.1114 | 0.97 | 63000 | 1.0587 |
|
177 |
+
| 1.1121 | 0.97 | 63500 | 1.0585 |
|
178 |
+
| 1.1078 | 0.98 | 64000 | 1.0584 |
|
179 |
+
| 1.1104 | 0.99 | 64500 | 1.0584 |
|
180 |
+
| 1.1057 | 1.0 | 65000 | 1.0584 |
|
181 |
+
|
182 |
+
|
183 |
+
### Framework versions
|
184 |
+
|
185 |
+
- Transformers 4.30.2
|
186 |
+
- Pytorch 1.13.1
|
187 |
+
- Datasets 2.13.1
|
188 |
+
- Tokenizers 0.13.3
|