File size: 2,491 Bytes
d4a98c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a27510
d4a98c8
 
 
 
 
 
 
 
 
7a27510
 
d4a98c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a27510
 
 
d4a98c8
7a27510
 
d4a98c8
 
 
7a27510
d4a98c8
 
 
 
 
 
7a27510
 
 
 
 
 
 
 
 
 
 
 
d4a98c8
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.84
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7931
- Accuracy: 0.84

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2107        | 1.0   | 56   | 0.4744          | 0.89     |
| 0.0867        | 1.99  | 112  | 0.7316          | 0.8      |
| 0.1117        | 2.99  | 168  | 0.6942          | 0.81     |
| 0.1024        | 4.0   | 225  | 0.6151          | 0.85     |
| 0.0141        | 5.0   | 281  | 0.7542          | 0.83     |
| 0.0089        | 5.99  | 337  | 0.7236          | 0.85     |
| 0.007         | 6.99  | 393  | 0.7115          | 0.84     |
| 0.0477        | 8.0   | 450  | 0.7334          | 0.85     |
| 0.0048        | 9.0   | 506  | 0.7772          | 0.85     |
| 0.0348        | 9.99  | 562  | 0.7465          | 0.85     |
| 0.0035        | 10.99 | 618  | 0.8011          | 0.84     |
| 0.004         | 11.95 | 672  | 0.7931          | 0.84     |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1