Update README.md
Browse files
README.md
CHANGED
@@ -5,4 +5,118 @@ license: apache-2.0
|
|
5 |
Finetuned from p1atdev/siglip-tagger-test-3
|
6 |
https://huggingface.co/p1atdev/siglip-tagger-test-3
|
7 |
|
8 |
-
test work
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
Finetuned from p1atdev/siglip-tagger-test-3
|
6 |
https://huggingface.co/p1atdev/siglip-tagger-test-3
|
7 |
|
8 |
+
test work
|
9 |
+
|
10 |
+
Usage:
|
11 |
+
```
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import numpy as np
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from transformers import SiglipVisionModel, SiglipPreTrainedModel, SiglipVisionConfig, AutoImageProcessor
|
17 |
+
from transformers.utils import ModelOutput
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class SiglipForImageClassifierOutput(ModelOutput):
|
21 |
+
loss: torch.FloatTensor | None = None
|
22 |
+
logits: torch.FloatTensor | None = None
|
23 |
+
pooler_output: torch.FloatTensor | None = None
|
24 |
+
hidden_states: tuple[torch.FloatTensor, ...] | None = None
|
25 |
+
attentions: tuple[torch.FloatTensor, ...] | None = None
|
26 |
+
|
27 |
+
class SiglipForImageClassification(SiglipPreTrainedModel):
|
28 |
+
config_class = SiglipVisionConfig
|
29 |
+
main_input_name = "pixel_values"
|
30 |
+
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
config,
|
34 |
+
):
|
35 |
+
super().__init__(config)
|
36 |
+
|
37 |
+
# self.num_labels = config.num_labels
|
38 |
+
self.siglip = SiglipVisionModel(config)
|
39 |
+
|
40 |
+
# Classifier head
|
41 |
+
self.classifier = (
|
42 |
+
nn.Linear(config.hidden_size, config.num_labels)
|
43 |
+
if config.num_labels > 0
|
44 |
+
else nn.Identity()
|
45 |
+
)
|
46 |
+
|
47 |
+
# Initialize weights and apply final processing
|
48 |
+
self.post_init()
|
49 |
+
|
50 |
+
def forward(
|
51 |
+
self, pixel_values: torch.FloatTensor, labels: torch.LongTensor | None = None
|
52 |
+
):
|
53 |
+
outputs = self.siglip(pixel_values)
|
54 |
+
pooler_output = outputs.pooler_output
|
55 |
+
logits = self.classifier(pooler_output)
|
56 |
+
|
57 |
+
loss = None
|
58 |
+
if labels is not None:
|
59 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
60 |
+
loss = loss_fct(logits, labels)
|
61 |
+
|
62 |
+
return SiglipForImageClassifierOutput(
|
63 |
+
loss=loss,
|
64 |
+
logits=logits,
|
65 |
+
pooler_output=outputs.pooler_output,
|
66 |
+
hidden_states=outputs.hidden_states,
|
67 |
+
attentions=outputs.attentions,
|
68 |
+
)
|
69 |
+
|
70 |
+
# モデル設定のロード
|
71 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
72 |
+
|
73 |
+
config = SiglipVisionConfig.from_pretrained('cella110n/siglip-tagger-FT3ep')
|
74 |
+
processor = AutoImageProcessor.from_pretrained("cella110n/siglip-tagger-FT3ep", config=config)
|
75 |
+
model = SiglipForImageClassification.from_pretrained('cella110n/siglip-tagger-FT3ep', torch_dtype=torch.bfloat16).to(device)
|
76 |
+
|
77 |
+
model.eval()
|
78 |
+
print("Model Loaded. device:", model.device)
|
79 |
+
|
80 |
+
from PIL import Image
|
81 |
+
|
82 |
+
# 入力画像サイズの確認と調整
|
83 |
+
img_path = "path/to/image"
|
84 |
+
img = Image.open(img_path).
|
85 |
+
|
86 |
+
inputs = processor(images=img, return_tensors="pt") # 画像をモデルに適した形式に変換
|
87 |
+
print("Image processed.")
|
88 |
+
|
89 |
+
# inputs.pixel_valuesの画像を表示
|
90 |
+
img = inputs.pixel_values[0].permute(1, 2, 0).cpu().numpy()
|
91 |
+
plt.imshow(img)
|
92 |
+
plt.axis('off')
|
93 |
+
plt.show()
|
94 |
+
|
95 |
+
# # モデルの予測実行
|
96 |
+
with torch.no_grad():
|
97 |
+
logits = (model(
|
98 |
+
**inputs.to(
|
99 |
+
model.device,
|
100 |
+
model.dtype
|
101 |
+
)
|
102 |
+
)
|
103 |
+
.logits.detach()
|
104 |
+
.cpu()
|
105 |
+
.float()
|
106 |
+
)
|
107 |
+
|
108 |
+
logits = np.clip(logits, 0.0, 1.0) # オーバーフローを防ぐためにlogitsをクリップ
|
109 |
+
|
110 |
+
prob_cutoff = 0.3 # この確率以上のクラスのみを表示
|
111 |
+
|
112 |
+
result = {}
|
113 |
+
|
114 |
+
for prediction in logits:
|
115 |
+
for i, prob in enumerate(prediction):
|
116 |
+
if prob.item() > prob_cutoff:
|
117 |
+
result[model.config.id2label[i]] = prob.item()
|
118 |
+
|
119 |
+
# resultを、高いほうから表示
|
120 |
+
sorted_result = sorted(result.items(), key=lambda x: x[1], reverse=True)
|
121 |
+
sorted_result
|
122 |
+
```
|