End of training
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv2-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: layoutlmv2-base-uncased_finetuned_docvqa
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# layoutlmv2-base-uncased_finetuned_docvqa
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 3.6446
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 5e-05
|
38 |
+
- train_batch_size: 4
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- num_epochs: 10
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
+
|:-------------:|:------:|:----:|:---------------:|
|
49 |
+
| 5.1899 | 0.2212 | 50 | 4.5198 |
|
50 |
+
| 4.3841 | 0.4425 | 100 | 3.9910 |
|
51 |
+
| 4.0167 | 0.6637 | 150 | 3.9030 |
|
52 |
+
| 3.7906 | 0.8850 | 200 | 3.4974 |
|
53 |
+
| 3.426 | 1.1062 | 250 | 3.7834 |
|
54 |
+
| 3.0774 | 1.3274 | 300 | 3.2013 |
|
55 |
+
| 2.9541 | 1.5487 | 350 | 3.0711 |
|
56 |
+
| 2.7072 | 1.7699 | 400 | 2.7067 |
|
57 |
+
| 2.3127 | 1.9912 | 450 | 2.6800 |
|
58 |
+
| 2.0786 | 2.2124 | 500 | 2.6677 |
|
59 |
+
| 1.9055 | 2.4336 | 550 | 2.5482 |
|
60 |
+
| 2.0272 | 2.6549 | 600 | 2.2344 |
|
61 |
+
| 1.6753 | 2.8761 | 650 | 2.3265 |
|
62 |
+
| 1.4848 | 3.0973 | 700 | 2.5170 |
|
63 |
+
| 1.4359 | 3.3186 | 750 | 2.4527 |
|
64 |
+
| 1.2884 | 3.5398 | 800 | 2.4033 |
|
65 |
+
| 1.3217 | 3.7611 | 850 | 2.0981 |
|
66 |
+
| 1.3359 | 3.9823 | 900 | 2.2481 |
|
67 |
+
| 0.9068 | 4.2035 | 950 | 2.4053 |
|
68 |
+
| 1.1537 | 4.4248 | 1000 | 2.5739 |
|
69 |
+
| 0.8742 | 4.6460 | 1050 | 2.5003 |
|
70 |
+
| 0.9135 | 4.8673 | 1100 | 2.5511 |
|
71 |
+
| 0.9073 | 5.0885 | 1150 | 2.6724 |
|
72 |
+
| 0.6596 | 5.3097 | 1200 | 2.6174 |
|
73 |
+
| 0.7797 | 5.5310 | 1250 | 2.8350 |
|
74 |
+
| 0.6031 | 5.7522 | 1300 | 3.1642 |
|
75 |
+
| 0.7287 | 5.9735 | 1350 | 3.0317 |
|
76 |
+
| 0.4586 | 6.1947 | 1400 | 3.1821 |
|
77 |
+
| 0.5755 | 6.4159 | 1450 | 3.1222 |
|
78 |
+
| 0.4174 | 6.6372 | 1500 | 3.6997 |
|
79 |
+
| 0.2839 | 6.8584 | 1550 | 3.7044 |
|
80 |
+
| 0.5378 | 7.0796 | 1600 | 3.4223 |
|
81 |
+
| 0.3549 | 7.3009 | 1650 | 3.3740 |
|
82 |
+
| 0.2239 | 7.5221 | 1700 | 3.6018 |
|
83 |
+
| 0.3209 | 7.7434 | 1750 | 3.3689 |
|
84 |
+
| 0.2594 | 7.9646 | 1800 | 3.6625 |
|
85 |
+
| 0.1606 | 8.1858 | 1850 | 3.6916 |
|
86 |
+
| 0.1525 | 8.4071 | 1900 | 3.6299 |
|
87 |
+
| 0.1104 | 8.6283 | 1950 | 3.7133 |
|
88 |
+
| 0.3046 | 8.8496 | 2000 | 3.7701 |
|
89 |
+
| 0.3161 | 9.0708 | 2050 | 3.6224 |
|
90 |
+
| 0.1331 | 9.2920 | 2100 | 3.6198 |
|
91 |
+
| 0.2595 | 9.5133 | 2150 | 3.6251 |
|
92 |
+
| 0.1928 | 9.7345 | 2200 | 3.6359 |
|
93 |
+
| 0.1465 | 9.9558 | 2250 | 3.6446 |
|
94 |
+
|
95 |
+
|
96 |
+
### Framework versions
|
97 |
+
|
98 |
+
- Transformers 4.42.4
|
99 |
+
- Pytorch 2.3.1+cu121
|
100 |
+
- Datasets 2.20.0
|
101 |
+
- Tokenizers 0.19.1
|