cgus
/

Text Generation
Transformers
English
Chinese
llama
cgus commited on
Commit
a695f0d
β€’
1 Parent(s): a3d1993

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +136 -0
README.md ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - zh
6
+ library_name: transformers
7
+ widget:
8
+ - text: "<s> [|User|] Hi πŸ‘‹ </s>[|Assistant|]"
9
+ ---
10
+
11
+ ## MiniChat-2-3B-EXL2
12
+ Original model: [MiniChat-2-3B](https://huggingface.co/GeneZC/MiniChat-2-3B)
13
+ Model creator: [GeneZC](https://huggingface.co/GeneZC)
14
+
15
+ [4bpw h8 (main)](https://huggingface.co/cgus/MiniChat-2-3B-exl2/tree/4bpw-h8)
16
+ [4.65bpw h8](https://huggingface.co/cgus/MiniChat-2-3B-exl2/tree/4.65bpw-h8)
17
+ [5bpw h8](https://huggingface.co/cgus/MiniChat-2-3B-exl2/tree/5bpw-h8)
18
+ [5.5bpw h8](https://huggingface.co/cgus/MiniChat-2-3B-exl2/tree/5.5bpw-h8)
19
+ [6bpw h8](https://huggingface.co/cgus/MiniChat-2-3B-exl2/tree/6bpw-h8)
20
+ [8bpw h8](https://huggingface.co/cgus/MiniChat-2-3B-exl2/tree/8bpw-h8)
21
+
22
+ Quantized with Exllamav2-0.0.11 with default dataset.
23
+
24
+ ## How to run
25
+
26
+ This quantization method uses GPU and requires Exllamav2 loader which can be found in following applications:
27
+
28
+ [Text Generation Webui](https://github.com/oobabooga/text-generation-webui)
29
+
30
+ [KoboldAI](https://github.com/henk717/KoboldAI)
31
+
32
+ [ExUI](https://github.com/turboderp/exui)
33
+
34
+ # Original model card:
35
+
36
+ ## MiniChat-2-3B
37
+
38
+ πŸ“‘ [arXiv](https://arxiv.org/abs/2311.07052) | πŸ‘» [GitHub](https://github.com/GeneZC/MiniMA) | πŸ€— [HuggingFace-MiniMA](https://huggingface.co/GeneZC/MiniMA-3B) | πŸ€— [HuggingFace-MiniChat](https://huggingface.co/GeneZC/MiniChat-3B) | πŸ€– [ModelScope-MiniMA](https://modelscope.cn/models/GeneZC/MiniMA-3B) | πŸ€– [ModelScope-MiniChat](https://modelscope.cn/models/GeneZC/MiniChat-3B) | πŸ€— [HuggingFace-MiniChat-1.5](https://huggingface.co/GeneZC/MiniChat-1.5-3B) | πŸ€— [HuggingFace-MiniMA-2](https://huggingface.co/GeneZC/MiniMA-2-3B) | πŸ€— [HuggingFace-MiniChat-2](https://huggingface.co/GeneZC/MiniChat-2-3B)
39
+
40
+ πŸ†• **Updates from MiniChat-3B**:
41
+ - better base model MiniMA-2-3B;
42
+ - better data mixture;
43
+ - use of [NEFTune](https://arxiv.org/abs/2310.05914);
44
+ - use of [DPO](https://arxiv.org/abs/2305.18290).
45
+
46
+ ❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.
47
+
48
+ A language model continued from MiniMA-3B and finetuned on both instruction and preference data.
49
+
50
+ Surpassing Vicuna-7B and approximating LLaMA-2-Chat-7B on MT-Bench.
51
+
52
+ <img src="https://huggingface.co/GeneZC/MiniChat-2-3B/resolve/main/teaser_b.jpg" alt="teaser_b" width="687" />
53
+
54
+ **Standard Benchmarks**
55
+
56
+ |Method|TFLOPs|MMLU (5-shot)|CEval (5-shot)|DROP (3-shot)|HumanEval (0-shot)|BBH (3-shot)|GSM8K (8-shot)|
57
+ |--|--|--|--|--|--|--|--|
58
+ |Mamba-2.8B|4.6E9|25.58|24.74|15.72|7.32|29.37|3.49|
59
+ |ShearedLLaMA-2.7B|0.8E9|26.97|22.88|19.98|4.88|30.48|3.56|
60
+ |BTLM-3B|11.3E9|27.20|26.00|17.84|10.98|30.87|4.55|
61
+ |StableLM-3B|72.0E9|44.75|31.05|22.35|15.85|32.59|10.99|
62
+ |Qwen-1.8B|23.8E9|44.05|54.75|12.97|14.02|30.80|22.97|
63
+ |Phi-2-2.8B|159.9E9|56.74|34.03|30.74|46.95|44.13|55.42|
64
+ |LLaMA-2-7B|84.0E9|46.00|34.40|31.57|12.80|32.02|14.10|
65
+ ||
66
+ |MiniMA-3B|4.0E9|28.51|28.23|22.50|10.98|31.61|8.11|
67
+ |MiniChat-3B|4.0E9|38.40|36.48|22.58|18.29|31.36|29.72|
68
+ |MiniMA-2-3B|13.4E9|40.14|44.65|23.10|14.63|31.43|8.87|
69
+ |MiniChat-2-3B|13.4E9|46.17|43.91|30.26|22.56|34.95|38.13|
70
+
71
+ **Instruction-following Benchmarks**
72
+
73
+ |Method|AlpacaEval|MT-Bench|MT-Bench-ZH|
74
+ |--|--|--|--|
75
+ |GPT-4|95.28|9.18|8.96|
76
+ |Zephyr-7B-Beta|90.60|7.34|6.27<sup>#</sup>|
77
+ |Vicuna-7B|76.84|6.17|5.22<sup>#</sup>|
78
+ |LLaMA-2-Chat-7B|71.37|6.27|5.43<sup>#</sup>|
79
+ |Qwen-Chat-7B|-|-|6.24|
80
+ |Phi-2-DPO|81.37|-|1.59<sup>#</sup><sup>$</sup>|
81
+ |StableLM-Zephyr-3B|76.00|6.64|4.31<sup>#</sup>|
82
+ |Rocket-3B|79.75|6.56|4.07<sup>#</sup>|
83
+ |Qwen-Chat-1.8B|-|-|5.65|
84
+ ||
85
+ |MiniChat-3B|48.82|-|-|
86
+ |MiniChat-2-3B|77.30|6.23|6.04|
87
+
88
+ <sup>#</sup> specialized mainly for English.
89
+
90
+ <sup>$</sup> finetuned without multi-turn instruction data.
91
+
92
+ The following is an example code snippet to use MiniChat-2-3B:
93
+
94
+ ```python
95
+ import torch
96
+
97
+ from transformers import AutoModelForCausalLM, AutoTokenizer
98
+
99
+ from conversation import get_default_conv_template
100
+
101
+ # MiniChat
102
+ tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-2-3B", use_fast=False)
103
+ # GPU.
104
+ model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-2-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
105
+ # CPU.
106
+ # model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-2-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval()
107
+
108
+ conv = get_default_conv_template("minichat")
109
+
110
+ question = "Implement a program to find the common elements in two arrays without using any extra data structures."
111
+ conv.append_message(conv.roles[0], question)
112
+ conv.append_message(conv.roles[1], None)
113
+ prompt = conv.get_prompt()
114
+ input_ids = tokenizer([prompt]).input_ids
115
+ output_ids = model.generate(
116
+ torch.as_tensor(input_ids).cuda(),
117
+ do_sample=True,
118
+ temperature=0.7,
119
+ max_new_tokens=1024,
120
+ )
121
+ output_ids = output_ids[0][len(input_ids[0]):]
122
+ output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
123
+ # output: "def common_elements(arr1, arr2):\n if len(arr1) == 0:\n return []\n if len(arr2) == 0:\n return arr1\n\n common_elements = []\n for element in arr1:\n if element in arr2:\n common_elements.append(element)\n\n return common_elements"
124
+ # Multiturn conversation could be realized by continuously appending questions to `conv`.
125
+ ```
126
+
127
+ ## Bibtex
128
+
129
+ ```bibtex
130
+ @article{zhang2023law,
131
+ title={Towards the Law of Capacity Gap in Distilling Language Models},
132
+ author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
133
+ year={2023},
134
+ url={https://arxiv.org/abs/2311.07052}
135
+ }
136
+ ```