chainyo commited on
Commit
5a99b54
·
1 Parent(s): d417c1f

update tokenizer + instructions

Browse files
README.md CHANGED
@@ -1,3 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
1
  # Alpaca LoRa 7B
2
 
3
  This repository contains a LLaMA-7B fine-tuned model on the [Standford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) cleaned version dataset.
@@ -6,20 +17,73 @@ This repository contains a LLaMA-7B fine-tuned model on the [Standford Alpaca](h
6
 
7
  # Usage
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ## Using the model
10
 
11
  ```python
12
- from transformers import LlamaTokenizer, LlamaForCausalLM,
 
13
 
14
- tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/alpaca-lora-7b")
15
  model = LlamaForCausalLM.from_pretrained(
16
  "chainyo/alpaca-lora-7b",
17
  load_in_8bit=True,
18
  torch_dtype=torch.float16,
19
  device_map="auto",
20
  )
 
 
 
 
 
 
 
21
 
22
  model.eval()
23
  if torch.__version__ >= "2":
24
  model = torch.compile(model)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ```
 
1
+ ---
2
+ title: Alpaca LoRa 7B
3
+ language: en
4
+ license: other
5
+ tags:
6
+ - alpaca
7
+ - lora
8
+ - llama
9
+ - peft
10
+ ---
11
+
12
  # Alpaca LoRa 7B
13
 
14
  This repository contains a LLaMA-7B fine-tuned model on the [Standford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) cleaned version dataset.
 
17
 
18
  # Usage
19
 
20
+ ## Creating prompt
21
+
22
+ The model was trained on the following kind of prompt:
23
+
24
+ ```python
25
+ def generate_prompt(instruction: str, input_ctxt: str = None) -> str:
26
+ if input:
27
+ return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
28
+
29
+ ### Instruction:
30
+ {instruction}
31
+
32
+ ### Input:
33
+ {input}
34
+
35
+ ### Response:"""
36
+ else:
37
+ return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
38
+
39
+ ### Instruction:
40
+ {instruction}
41
+
42
+ ### Response:"""
43
+ ```
44
+
45
  ## Using the model
46
 
47
  ```python
48
+ import torch
49
+ from transformers import GenerationConfig, LlamaTokenizer, LlamaForCausalLM
50
 
51
+ tokenizer = LlamaTokenizer.from_pretrained("chainyo/alpaca-lora-7b")
52
  model = LlamaForCausalLM.from_pretrained(
53
  "chainyo/alpaca-lora-7b",
54
  load_in_8bit=True,
55
  torch_dtype=torch.float16,
56
  device_map="auto",
57
  )
58
+ generation_config = GenerationConfig(
59
+ temperature=0.2,
60
+ top_p=0.75,
61
+ top_k=40,
62
+ num_beams=4,
63
+ max_new_tokens=128,
64
+ )
65
 
66
  model.eval()
67
  if torch.__version__ >= "2":
68
  model = torch.compile(model)
69
+
70
+ instruction = "What is the meaning of life?"
71
+ input_ctxt = None # For some tasks, you can provide an input context to help the model generate a better response.
72
+
73
+ prompt = generate_prompt(instruction, input_ctxt)
74
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
75
+ input_ids = input_ids.to(model.device)
76
+
77
+ with torch.no_grad():
78
+ outputs = model.generate(
79
+ input_ids=input_ids,
80
+ generation_config=generation_config,
81
+ return_dict_in_generate=True,
82
+ output_scores=True,
83
+ )
84
+
85
+ response = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
86
+ print(response)
87
+
88
+ >>> The meaning of life is to live a life of meaning.
89
  ```
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "", "eos_token": "", "model_max_length": 1000000000000000019884624838656, "tokenizer_class": "LlaMATokenizer", "unk_token": ""}