File size: 1,904 Bytes
5298838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
license: apache-2.0
tags:
- vision
- image-segmentation
datasets:
- segments/sidewalk-semantic
---

# SegFormer (b1-sized) model fine-tuned on sidewalk-semantic dataset

SegFormer model fine-tuned on segments/sidewalk-semantic at resolution 512x512. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). 

## Model description

SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.

## Intended uses & limitations

You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you.

### How to use

Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:

```python
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import requests

feature_extractor = SegformerFeatureExtractor(reduce_labels=True)
model = SegformerForSemanticSegmentation.from_pretrained("ChainYo/segformer-sidewalk")

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits  # shape (batch_size, num_labels, height/4, width/4)
```

For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#).