|
|
|
|
|
import torch |
|
from torch import nn |
|
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from torch.nn.functional import scaled_dot_product_attention |
|
|
|
from typing import Optional |
|
import numpy as np |
|
|
|
from xformers.ops import SwiGLU |
|
|
|
try: |
|
from flash_attn.flash_attn_interface import flash_attn_varlen_func |
|
|
|
FLASH_ATTN_AVAILABLE = True |
|
except ImportError: |
|
FLASH_ATTN_AVAILABLE = False |
|
|
|
from transformers import ( |
|
PreTrainedModel, |
|
PretrainedConfig, |
|
DataCollatorForLanguageModeling, |
|
) |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
MaskedLMOutput, |
|
SequenceClassifierOutput, |
|
) |
|
|
|
from .rotary import precompute_freqs_cis, apply_rotary_emb |
|
|
|
|
|
class DataCollatorWithPacking(DataCollatorForLanguageModeling): |
|
def __init__(self, pack_sequences=False, **kwargs): |
|
super().__init__(**kwargs) |
|
self.pack_sequences = pack_sequences |
|
|
|
def __call__(self, batch): |
|
if self.pack_sequences: |
|
|
|
if "position_ids" not in batch[0]: |
|
for item in batch: |
|
item["position_ids"] = list(range(len(item["input_ids"]))) |
|
|
|
|
|
input_ids_list = [item["input_ids"] for item in batch] |
|
position_ids_list = [item["position_ids"] for item in batch] |
|
seqlens = np.array([0] + [len(ids) for ids in input_ids_list]) |
|
|
|
packed_batch = { |
|
"position_ids": np.concatenate(position_ids_list, axis=0), |
|
"input_ids": np.concatenate(input_ids_list, axis=0), |
|
"cu_seqlens": np.cumsum(seqlens), |
|
"max_seqlen": max(seqlens), |
|
} |
|
|
|
batch = super().__call__([packed_batch]) |
|
batch["cu_seqlens"] = batch["cu_seqlens"].to(torch.int32).squeeze() |
|
else: |
|
batch = super().__call__(batch) |
|
batch["attention_mask"] = batch["attention_mask"].to(torch.bool) |
|
|
|
return batch |
|
|
|
|
|
class NeoBERTConfig(PretrainedConfig): |
|
model_type = "neobert" |
|
|
|
|
|
def __init__( |
|
self, |
|
hidden_size: int = 768, |
|
num_hidden_layers: int = 28, |
|
num_attention_heads: int = 12, |
|
intermediate_size: int = 3072, |
|
embedding_init_range: float = 0.02, |
|
decoder_init_range: float = 0.02, |
|
norm_eps: float = 1e-06, |
|
vocab_size: int = 30522, |
|
pad_token_id: int = 0, |
|
max_length: int = 1024, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
if hidden_size % num_attention_heads != 0: |
|
raise ValueError("Hidden size must be divisible by the number of heads.") |
|
self.dim_head = hidden_size // num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.embedding_init_range = embedding_init_range |
|
self.decoder_init_range = decoder_init_range |
|
self.norm_eps = norm_eps |
|
self.vocab_size = vocab_size |
|
self.pad_token_id = pad_token_id |
|
self.max_length = max_length |
|
self.kwargs = kwargs |
|
|
|
|
|
class EncoderBlock(nn.Module): |
|
"""Transformer encoder block.""" |
|
|
|
def __init__(self, config: NeoBERTConfig): |
|
super().__init__() |
|
|
|
self.config = config |
|
|
|
|
|
self.qkv = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size * 3, bias=False) |
|
self.wo = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=False) |
|
|
|
|
|
multiple_of = 8 |
|
intermediate_size = int(2 * config.intermediate_size / 3) |
|
intermediate_size = multiple_of * ((intermediate_size + multiple_of - 1) // multiple_of) |
|
self.ffn = SwiGLU(config.hidden_size, intermediate_size, config.hidden_size, bias=False) |
|
|
|
|
|
self.attention_norm = nn.RMSNorm(config.hidden_size, config.norm_eps) |
|
self.ffn_norm = nn.RMSNorm(config.hidden_size, config.norm_eps) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
freqs_cis: torch.Tensor, |
|
output_attentions: bool, |
|
max_seqlen: int = None, |
|
cu_seqlens: torch.Tensor = None, |
|
): |
|
|
|
attn_output, attn_weights = self._att_block( |
|
self.attention_norm(x), attention_mask, freqs_cis, output_attentions, max_seqlen, cu_seqlens |
|
) |
|
|
|
|
|
x = x + attn_output |
|
|
|
|
|
x = x + self.ffn(self.ffn_norm(x)) |
|
|
|
return x, attn_weights |
|
|
|
def _att_block( |
|
self, |
|
x: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
freqs_cis: torch.Tensor, |
|
output_attentions: bool, |
|
max_seqlen: int = None, |
|
cu_seqlens: torch.Tensor = None, |
|
): |
|
batch_size, seq_len, _ = x.shape |
|
|
|
xq, xk, xv = self.qkv(x).view(batch_size, seq_len, self.config.num_attention_heads, self.config.dim_head * 3).chunk(3, axis=-1) |
|
|
|
xq, xk = apply_rotary_emb(xq, xk, freqs_cis) |
|
|
|
|
|
attn_weights = None |
|
|
|
|
|
if cu_seqlens is not None: |
|
attn = flash_attn_varlen_func( |
|
q=xq.squeeze(0), |
|
k=xk.squeeze(0), |
|
v=xv.squeeze(0), |
|
cu_seqlens_q=cu_seqlens, |
|
cu_seqlens_k=cu_seqlens, |
|
max_seqlen_q=max_seqlen, |
|
max_seqlen_k=max_seqlen, |
|
dropout_p=0.0, |
|
causal=False, |
|
) |
|
|
|
elif output_attentions: |
|
attn_weights = xq.permute(0, 2, 1, 3) @ xk.permute(0, 2, 3, 1) / (xq.size(-1) ** 0.5) |
|
if attention_mask is not None: |
|
attn_weights = attn_weights * attention_mask |
|
attn_weights = attn_weights.softmax(-1) |
|
attn = attn_weights @ xv.permute(0, 2, 1, 3) |
|
attn = attn.transpose(1, 2) |
|
|
|
else: |
|
attn = scaled_dot_product_attention( |
|
query=xq.transpose(1, 2), |
|
key=xk.transpose(1, 2), |
|
value=xv.transpose(1, 2), |
|
attn_mask=attention_mask.bool(), |
|
dropout_p=0, |
|
).transpose(1, 2) |
|
|
|
return self.wo(attn.reshape(batch_size, seq_len, self.config.num_attention_heads * self.config.dim_head)), attn_weights |
|
|
|
|
|
class NeoBERTPreTrainedModel(PreTrainedModel): |
|
config_class = NeoBERTConfig |
|
base_model_prefix = "model" |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.uniform_(-self.config.decoder_init_range, self.config.decoder_init_range) |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.uniform_(-self.config.embedding_init_range, self.config.embedding_init_range) |
|
|
|
|
|
class NeoBERT(NeoBERTPreTrainedModel): |
|
config_class = NeoBERTConfig |
|
|
|
def __init__(self, config: NeoBERTConfig): |
|
super().__init__(config) |
|
|
|
self.config = config |
|
|
|
self.encoder = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
|
|
|
|
freqs_cis = precompute_freqs_cis(config.hidden_size // config.num_attention_heads, config.max_length) |
|
self.register_buffer("freqs_cis", freqs_cis, persistent=False) |
|
|
|
self.transformer_encoder = nn.ModuleList() |
|
for _ in range(config.num_hidden_layers): |
|
self.transformer_encoder.append(EncoderBlock(config)) |
|
|
|
self.layer_norm = nn.RMSNorm(config.hidden_size, config.norm_eps) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
position_ids: torch.Tensor = None, |
|
max_seqlen: int = None, |
|
cu_seqlens: torch.Tensor = None, |
|
attention_mask: torch.Tensor = None, |
|
output_hidden_states: bool = False, |
|
output_attentions: bool = False, |
|
**kwargs, |
|
): |
|
|
|
hidden_states, attentions = [], [] |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1).repeat(1, self.config.num_attention_heads, attention_mask.size(-1), 1) |
|
|
|
|
|
if cu_seqlens is not None: |
|
assert ( |
|
FLASH_ATTN_AVAILABLE |
|
), "Flash-attention is not available. Please ''pip install flash_attn'', or provide un-packed sequences." |
|
assert not output_attentions, "Output attentions is not supported when sequences are packed." |
|
assert max_seqlen is not None, "Missing max_seqlen. It must be provided when cu_seqlens are not None." |
|
assert input_ids.shape[0] == 1, "Cumulative sequence lengths are provided but input_ids are not packed." |
|
assert input_ids.is_cuda, "Packing uses an implementation of flash-attention and is only supported on GPU." |
|
|
|
|
|
freqs_cis = self.freqs_cis[position_ids] if position_ids is not None else self.freqs_cis[: input_ids.shape[1]].unsqueeze(0) |
|
|
|
|
|
x = self.encoder(input_ids) |
|
|
|
|
|
for layer in self.transformer_encoder: |
|
x, attn = layer(x, attention_mask, freqs_cis, output_attentions, max_seqlen, cu_seqlens) |
|
if output_hidden_states: |
|
hidden_states.append(x) |
|
if output_attentions: |
|
attentions.append(attn) |
|
|
|
|
|
x = self.layer_norm(x) |
|
|
|
|
|
return BaseModelOutput( |
|
last_hidden_state=x, |
|
hidden_states=hidden_states if output_hidden_states else None, |
|
attentions=attentions if output_attentions else None, |
|
) |
|
|
|
|
|
class NeoBERTLMHead(NeoBERTPreTrainedModel): |
|
config_class = NeoBERTConfig |
|
|
|
def __init__(self, config: NeoBERTConfig): |
|
super().__init__(config) |
|
|
|
self.config = config |
|
|
|
self.model = NeoBERT(config) |
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size) |
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
position_ids: torch.Tensor = None, |
|
max_seqlen: int = None, |
|
cu_seqlens: torch.Tensor = None, |
|
attention_mask: torch.Tensor = None, |
|
output_hidden_states: bool = False, |
|
output_attentions: bool = False, |
|
**kwargs, |
|
): |
|
|
|
output = self.model.forward( |
|
input_ids, |
|
position_ids, |
|
max_seqlen, |
|
cu_seqlens, |
|
attention_mask, |
|
output_hidden_states, |
|
output_attentions, |
|
) |
|
logits = self.decoder(output.last_hidden_state) |
|
|
|
return MaskedLMOutput( |
|
hidden_states=output.hidden_states if output_hidden_states else None, |
|
attentions=output.attentions if output_attentions else None, |
|
logits=logits, |
|
) |
|
|
|
|
|
class NeoBERTForSequenceClassification(NeoBERTPreTrainedModel): |
|
config_class = NeoBERTConfig |
|
|
|
def __init__(self, config: NeoBERTConfig): |
|
super().__init__(config) |
|
|
|
self.config = config |
|
|
|
self.num_labels = getattr(config, "num_labels", 2) |
|
self.classifier_dropout = getattr(config, "classifier_dropout", 0.1) |
|
self.classifier_init_range = getattr(config, "classifier_init_range", 0.02) |
|
|
|
self.model = NeoBERT(config) |
|
|
|
self.dense = nn.Linear(self.config.hidden_size, self.config.hidden_size) |
|
self.dropout = nn.Dropout(self.classifier_dropout) |
|
self.classifier = nn.Linear(self.config.hidden_size, self.num_labels) |
|
|
|
self.post_init() |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.classifier_init_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
position_ids: torch.Tensor = None, |
|
max_seqlen: int = None, |
|
cu_seqlens: torch.Tensor = None, |
|
attention_mask: torch.Tensor = None, |
|
output_hidden_states: bool = False, |
|
output_attentions: bool = False, |
|
labels: Optional[torch.Tensor] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
|
|
output = self.model.forward( |
|
input_ids, |
|
position_ids, |
|
max_seqlen, |
|
cu_seqlens, |
|
attention_mask, |
|
output_hidden_states, |
|
output_attentions, |
|
) |
|
hidden_states = output.last_hidden_state |
|
|
|
x = hidden_states[:, 0, :] |
|
x = self.dropout(x) |
|
x = self.dense(x) |
|
x = torch.tanh(x) |
|
x = self.dropout(x) |
|
|
|
logits = self.classifier(x) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
result = (logits,) |
|
return ((loss,) + result) if loss is not None else result |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=output.hidden_states if output_hidden_states else None, |
|
attentions=output.attentions if output_attentions else None, |
|
) |
|
|