Lolalb commited on
Commit
4151e21
·
verified ·
1 Parent(s): 3f6fd5c

Upload NeoBERTLMHead

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +31 -0
  3. model.py +420 -0
  4. model.safetensors +3 -0
  5. rotary.py +61 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "NeoBERTLMHead"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "model.NeoBERTConfig",
7
+ "AutoModel": "model.NeoBERTLMHead"
8
+ },
9
+ "classifier_init_range": 0.02,
10
+ "decoder_init_range": 0.02,
11
+ "dim_head": 64,
12
+ "embedding_init_range": 0.02,
13
+ "hidden_size": 768,
14
+ "intermediate_size": 3072,
15
+ "kwargs": {
16
+ "classifier_init_range": 0.02,
17
+ "pretrained_model_name_or_path": "google-bert/bert-base-uncased",
18
+ "trust_remote_code": true
19
+ },
20
+ "max_length": 4096,
21
+ "model_type": "neobert",
22
+ "norm_eps": 1e-05,
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 28,
25
+ "pad_token_id": 0,
26
+ "pretrained_model_name_or_path": "google-bert/bert-base-uncased",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.48.2",
29
+ "trust_remote_code": true,
30
+ "vocab_size": 30522
31
+ }
model.py ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # From https://github.com/facebookresearch/llama/blob/main/llama/model.py
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
7
+ from torch.nn.functional import scaled_dot_product_attention
8
+
9
+ from typing import Optional
10
+ import numpy as np
11
+
12
+ from xformers.ops import SwiGLU
13
+
14
+ try:
15
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func
16
+
17
+ FLASH_ATTN_AVAILABLE = True
18
+ except ImportError:
19
+ FLASH_ATTN_AVAILABLE = False
20
+
21
+ from transformers import (
22
+ PreTrainedModel,
23
+ PretrainedConfig,
24
+ DataCollatorForLanguageModeling,
25
+ )
26
+ from transformers.modeling_outputs import (
27
+ BaseModelOutput,
28
+ MaskedLMOutput,
29
+ SequenceClassifierOutput,
30
+ )
31
+
32
+ from .rotary import precompute_freqs_cis, apply_rotary_emb
33
+
34
+
35
+ class DataCollatorWithPacking(DataCollatorForLanguageModeling):
36
+ def __init__(self, pack_sequences=False, **kwargs):
37
+ super().__init__(**kwargs)
38
+ self.pack_sequences = pack_sequences
39
+
40
+ def __call__(self, batch):
41
+ if self.pack_sequences:
42
+ # Add position_ids if not present
43
+ if "position_ids" not in batch[0]:
44
+ for item in batch:
45
+ item["position_ids"] = list(range(len(item["input_ids"])))
46
+
47
+ # Pack the sequences into a single list
48
+ input_ids_list = [item["input_ids"] for item in batch]
49
+ position_ids_list = [item["position_ids"] for item in batch]
50
+ seqlens = np.array([0] + [len(ids) for ids in input_ids_list])
51
+
52
+ packed_batch = {
53
+ "position_ids": np.concatenate(position_ids_list, axis=0),
54
+ "input_ids": np.concatenate(input_ids_list, axis=0),
55
+ "cu_seqlens": np.cumsum(seqlens),
56
+ "max_seqlen": max(seqlens),
57
+ }
58
+
59
+ batch = super().__call__([packed_batch])
60
+ batch["cu_seqlens"] = batch["cu_seqlens"].to(torch.int32).squeeze()
61
+ else:
62
+ batch = super().__call__(batch)
63
+ batch["attention_mask"] = batch["attention_mask"].to(torch.bool)
64
+
65
+ return batch
66
+
67
+
68
+ class NeoBERTConfig(PretrainedConfig):
69
+ model_type = "neobert"
70
+
71
+ # All config parameters must have a default value.
72
+ def __init__(
73
+ self,
74
+ hidden_size: int = 768,
75
+ num_hidden_layers: int = 28,
76
+ num_attention_heads: int = 12,
77
+ intermediate_size: int = 3072,
78
+ embedding_init_range: float = 0.02,
79
+ decoder_init_range: float = 0.02,
80
+ norm_eps: float = 1e-06,
81
+ vocab_size: int = 30522,
82
+ pad_token_id: int = 0,
83
+ max_length: int = 1024,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(**kwargs)
87
+
88
+ self.hidden_size = hidden_size
89
+ self.num_hidden_layers = num_hidden_layers
90
+ self.num_attention_heads = num_attention_heads
91
+ if hidden_size % num_attention_heads != 0:
92
+ raise ValueError("Hidden size must be divisible by the number of heads.")
93
+ self.dim_head = hidden_size // num_attention_heads
94
+ self.intermediate_size = intermediate_size
95
+ self.embedding_init_range = embedding_init_range
96
+ self.decoder_init_range = decoder_init_range
97
+ self.norm_eps = norm_eps
98
+ self.vocab_size = vocab_size
99
+ self.pad_token_id = pad_token_id
100
+ self.max_length = max_length
101
+ self.kwargs = kwargs
102
+
103
+
104
+ class EncoderBlock(nn.Module):
105
+ """Transformer encoder block."""
106
+
107
+ def __init__(self, config: NeoBERTConfig):
108
+ super().__init__()
109
+
110
+ self.config = config
111
+
112
+ # Attention
113
+ self.qkv = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size * 3, bias=False)
114
+ self.wo = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=False)
115
+
116
+ # Feedforward network
117
+ multiple_of = 8
118
+ intermediate_size = int(2 * config.intermediate_size / 3)
119
+ intermediate_size = multiple_of * ((intermediate_size + multiple_of - 1) // multiple_of)
120
+ self.ffn = SwiGLU(config.hidden_size, intermediate_size, config.hidden_size, bias=False)
121
+
122
+ # Layer norms
123
+ self.attention_norm = nn.RMSNorm(config.hidden_size, config.norm_eps)
124
+ self.ffn_norm = nn.RMSNorm(config.hidden_size, config.norm_eps)
125
+
126
+ def forward(
127
+ self,
128
+ x: torch.Tensor,
129
+ attention_mask: torch.Tensor,
130
+ freqs_cis: torch.Tensor,
131
+ output_attentions: bool,
132
+ max_seqlen: int = None,
133
+ cu_seqlens: torch.Tensor = None,
134
+ ):
135
+ # Attention
136
+ attn_output, attn_weights = self._att_block(
137
+ self.attention_norm(x), attention_mask, freqs_cis, output_attentions, max_seqlen, cu_seqlens
138
+ )
139
+
140
+ # Residual
141
+ x = x + attn_output
142
+
143
+ # Feed-forward
144
+ x = x + self.ffn(self.ffn_norm(x))
145
+
146
+ return x, attn_weights
147
+
148
+ def _att_block(
149
+ self,
150
+ x: torch.Tensor,
151
+ attention_mask: torch.Tensor,
152
+ freqs_cis: torch.Tensor,
153
+ output_attentions: bool,
154
+ max_seqlen: int = None,
155
+ cu_seqlens: torch.Tensor = None,
156
+ ):
157
+ batch_size, seq_len, _ = x.shape
158
+
159
+ xq, xk, xv = self.qkv(x).view(batch_size, seq_len, self.config.num_attention_heads, self.config.dim_head * 3).chunk(3, axis=-1)
160
+
161
+ xq, xk = apply_rotary_emb(xq, xk, freqs_cis)
162
+
163
+ # Attn block
164
+ attn_weights = None
165
+
166
+ # Flash attention if the tensors are packed
167
+ if cu_seqlens is not None:
168
+ attn = flash_attn_varlen_func(
169
+ q=xq.squeeze(0),
170
+ k=xk.squeeze(0),
171
+ v=xv.squeeze(0),
172
+ cu_seqlens_q=cu_seqlens,
173
+ cu_seqlens_k=cu_seqlens,
174
+ max_seqlen_q=max_seqlen,
175
+ max_seqlen_k=max_seqlen,
176
+ dropout_p=0.0,
177
+ causal=False,
178
+ )
179
+ # Eager attention if attention weights are needed in the output
180
+ elif output_attentions:
181
+ attn_weights = xq.permute(0, 2, 1, 3) @ xk.permute(0, 2, 3, 1) / (xq.size(-1) ** 0.5)
182
+ if attention_mask is not None:
183
+ attn_weights = attn_weights * attention_mask
184
+ attn_weights = attn_weights.softmax(-1)
185
+ attn = attn_weights @ xv.permute(0, 2, 1, 3)
186
+ attn = attn.transpose(1, 2)
187
+ # Fall back to SDPA otherwise
188
+ else:
189
+ attn = scaled_dot_product_attention(
190
+ query=xq.transpose(1, 2),
191
+ key=xk.transpose(1, 2),
192
+ value=xv.transpose(1, 2),
193
+ attn_mask=attention_mask,
194
+ dropout_p=0,
195
+ ).transpose(1, 2)
196
+
197
+ return self.wo(attn.reshape(batch_size, seq_len, self.config.num_attention_heads * self.config.dim_head)), attn_weights
198
+
199
+
200
+ class NeoBERTPreTrainedModel(PreTrainedModel):
201
+ config_class = NeoBERTConfig
202
+ _supports_cache_class = True
203
+
204
+ def _init_weights(self, module):
205
+ if isinstance(module, nn.Linear):
206
+ module.weight.data.uniform_(-self.config.decoder_init_range, self.config.decoder_init_range)
207
+ elif isinstance(module, nn.Embedding):
208
+ module.weight.data.uniform_(-self.config.embedding_init_range, self.config.embedding_init_range)
209
+
210
+
211
+ class NeoBERT(NeoBERTPreTrainedModel):
212
+ config_class = NeoBERTConfig
213
+
214
+ def __init__(self, config: NeoBERTConfig):
215
+ super().__init__(config)
216
+
217
+ self.config = config
218
+
219
+ self.encoder = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
220
+
221
+ # Ensures freqs_cis is moved to the same devices as the model. Non-persistent buffers are not saved in the state_dict.
222
+ freqs_cis = precompute_freqs_cis(config.hidden_size // config.num_attention_heads, config.max_length)
223
+ self.register_buffer("freqs_cis", freqs_cis, persistent=False)
224
+
225
+ self.transformer_encoder = nn.ModuleList()
226
+ for _ in range(config.num_hidden_layers):
227
+ self.transformer_encoder.append(EncoderBlock(config))
228
+
229
+ self.layer_norm = nn.RMSNorm(config.hidden_size, config.norm_eps)
230
+
231
+ # Initialize weights and apply final processing
232
+ self.post_init()
233
+
234
+ def forward(
235
+ self,
236
+ input_ids: torch.Tensor,
237
+ position_ids: torch.Tensor = None,
238
+ max_seqlen: int = None,
239
+ cu_seqlens: torch.Tensor = None,
240
+ attention_mask: torch.Tensor = None,
241
+ output_hidden_states: bool = False,
242
+ output_attentions: bool = False,
243
+ **kwargs,
244
+ ):
245
+ # Initialize
246
+ hidden_states, attentions = [], []
247
+
248
+ # Expand and repeat: (Batch, Length) -> (Batch, Heads, Length, Length)
249
+ if attention_mask is not None:
250
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(1).repeat(1, self.config.num_attention_heads, attention_mask.size(-1), 1)
251
+
252
+ # Checks to be done if inputs are packed sequences
253
+ if cu_seqlens is not None:
254
+ assert (
255
+ FLASH_ATTN_AVAILABLE
256
+ ), "Flash-attention is not available. Please ''pip install flash_attn'', or provide un-packed sequences."
257
+ assert not output_attentions, "Output attentions is not supported when sequences are packed."
258
+ assert max_seqlen is not None, "Missing max_seqlen. It must be provided when cu_seqlens are not None."
259
+ assert input_ids.shape[0] == 1, "Cumulative sequence lengths are provided but input_ids are not packed."
260
+ assert input_ids.is_cuda, "Packing uses an implementation of flash-attention and is only supported on GPU."
261
+
262
+ # RoPE
263
+ freqs_cis = self.freqs_cis[position_ids] if position_ids is not None else self.freqs_cis[: input_ids.shape[1]].unsqueeze(0)
264
+
265
+ # Embedding
266
+ x = self.encoder(input_ids)
267
+
268
+ # Transformer encoder
269
+ for layer in self.transformer_encoder:
270
+ x, attn = layer(x, attention_mask, freqs_cis, output_attentions, max_seqlen, cu_seqlens)
271
+ if output_hidden_states:
272
+ hidden_states.append(x)
273
+ if output_attentions:
274
+ attentions.append(attn)
275
+
276
+ # Final normalization layer
277
+ x = self.layer_norm(x)
278
+
279
+ # Return the output of the last hidden layer
280
+ return BaseModelOutput(
281
+ last_hidden_state=x,
282
+ hidden_states=hidden_states if output_hidden_states else None,
283
+ attentions=attentions if output_attentions else None,
284
+ )
285
+
286
+
287
+ class NeoBERTLMHead(NeoBERTPreTrainedModel):
288
+ config_class = NeoBERTConfig
289
+
290
+ def __init__(self, config: NeoBERTConfig):
291
+ super().__init__(config)
292
+
293
+ self.config = config
294
+
295
+ self.model = NeoBERT(config)
296
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
297
+
298
+ self.post_init()
299
+
300
+ def forward(
301
+ self,
302
+ input_ids: torch.Tensor,
303
+ position_ids: torch.Tensor = None,
304
+ max_seqlen: int = None,
305
+ cu_seqlens: torch.Tensor = None,
306
+ attention_mask: torch.Tensor = None,
307
+ output_hidden_states: bool = False,
308
+ output_attentions: bool = False,
309
+ **kwargs,
310
+ ):
311
+
312
+ output = self.model.forward(
313
+ input_ids,
314
+ position_ids,
315
+ max_seqlen,
316
+ cu_seqlens,
317
+ attention_mask,
318
+ output_hidden_states,
319
+ output_attentions,
320
+ )
321
+ logits = self.decoder(output.last_hidden_state)
322
+
323
+ return MaskedLMOutput(
324
+ hidden_states=output.hidden_states if output_hidden_states else None,
325
+ attentions=output.attentions if output_attentions else None,
326
+ logits=logits,
327
+ )
328
+
329
+
330
+ class NeoBERTForSequenceClassification(NeoBERTPreTrainedModel):
331
+ config_class = NeoBERTConfig
332
+
333
+ def __init__(self, config: NeoBERTConfig):
334
+ super().__init__(config)
335
+
336
+ self.config = config
337
+
338
+ self.num_labels = getattr(config, "num_labels", 2)
339
+ self.classifier_dropout = getattr(config, "classifier_dropout", 0.1)
340
+ self.classifier_init_range = getattr(config, "classifier_init_range", 0.02)
341
+
342
+ self.model = NeoBERT(config)
343
+
344
+ self.dense = nn.Linear(self.config.hidden_size, self.config.hidden_size)
345
+ self.dropout = nn.Dropout(self.classifier_dropout)
346
+ self.classifier = nn.Linear(self.config.hidden_size, self.num_labels)
347
+
348
+ self.post_init()
349
+
350
+ def _init_weights(self, module):
351
+ if isinstance(module, nn.Linear):
352
+ module.weight.data.normal_(mean=0.0, std=self.classifier_init_range)
353
+ if module.bias is not None:
354
+ module.bias.data.zero_()
355
+
356
+ def forward(
357
+ self,
358
+ input_ids: torch.Tensor,
359
+ position_ids: torch.Tensor = None,
360
+ max_seqlen: int = None,
361
+ cu_seqlens: torch.Tensor = None,
362
+ attention_mask: torch.Tensor = None,
363
+ output_hidden_states: bool = False,
364
+ output_attentions: bool = False,
365
+ labels: Optional[torch.Tensor] = None,
366
+ return_dict: Optional[bool] = None,
367
+ ):
368
+
369
+ output = self.model.forward(
370
+ input_ids,
371
+ position_ids,
372
+ max_seqlen,
373
+ cu_seqlens,
374
+ attention_mask,
375
+ output_hidden_states,
376
+ output_attentions,
377
+ )
378
+ hidden_states = output.last_hidden_state
379
+
380
+ x = hidden_states[:, 0, :]
381
+ x = self.dropout(x)
382
+ x = self.dense(x)
383
+ x = torch.tanh(x)
384
+ x = self.dropout(x)
385
+
386
+ logits = self.classifier(x)
387
+
388
+ loss = None
389
+ if labels is not None:
390
+ if self.config.problem_type is None:
391
+ if self.num_labels == 1:
392
+ self.config.problem_type = "regression"
393
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
394
+ self.config.problem_type = "single_label_classification"
395
+ else:
396
+ self.config.problem_type = "multi_label_classification"
397
+
398
+ if self.config.problem_type == "regression":
399
+ loss_fct = MSELoss()
400
+ if self.num_labels == 1:
401
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
402
+ else:
403
+ loss = loss_fct(logits, labels)
404
+ elif self.config.problem_type == "single_label_classification":
405
+ loss_fct = CrossEntropyLoss()
406
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
407
+ elif self.config.problem_type == "multi_label_classification":
408
+ loss_fct = BCEWithLogitsLoss()
409
+ loss = loss_fct(logits, labels)
410
+
411
+ if not return_dict:
412
+ result = (logits,)
413
+ return ((loss,) + result) if loss is not None else result
414
+
415
+ return SequenceClassifierOutput(
416
+ loss=loss,
417
+ logits=logits,
418
+ hidden_states=output.hidden_states if output_hidden_states else None,
419
+ attentions=output.attentions if output_attentions else None,
420
+ )
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b547ae956c4ef7024a444d93464a9028cc6594cf36830fd5069a7ef9a53d799f
3
+ size 980567608
rotary.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # From https://github.com/facebookresearch/llama/blob/main/llama/model.py
2
+
3
+ import torch
4
+ from typing import Tuple
5
+
6
+
7
+ def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
8
+ """
9
+ Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
10
+
11
+ This function calculates a frequency tensor with complex exponentials using the given dimension 'dim'
12
+ and the end index 'end'. The 'theta' parameter scales the frequencies.
13
+ The returned tensor contains complex values in complex64 data type.
14
+
15
+ Args:
16
+ dim (int): Dimension of the frequency tensor.
17
+ end (int): End index for precomputing frequencies.
18
+ theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
19
+
20
+ Returns:
21
+ torch.Tensor: Precomputed frequency tensor with complex exponentials.
22
+ """
23
+
24
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
25
+ t = torch.arange(end, device=freqs.device)
26
+ freqs = torch.outer(t, freqs).float()
27
+ return torch.polar(torch.ones_like(freqs), freqs)
28
+
29
+
30
+ def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
31
+ assert freqs_cis.shape[1:] == (x.shape[1], x.shape[-1])
32
+ return freqs_cis.contiguous().unsqueeze(2)
33
+
34
+
35
+ def apply_rotary_emb(
36
+ xq: torch.Tensor,
37
+ xk: torch.Tensor,
38
+ freqs_cis: torch.Tensor,
39
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
40
+ """
41
+ Apply rotary embeddings to input tensors using the given frequency tensor.
42
+
43
+ This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
44
+ frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
45
+ is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
46
+ returned as real tensors.
47
+
48
+ Args:
49
+ xq (torch.Tensor): Query tensor to apply rotary embeddings.
50
+ xk (torch.Tensor): Key tensor to apply rotary embeddings.
51
+ freqs_cis (torch.Tensor): Precomputed frequency tensor for complex exponentials.
52
+
53
+ Returns:
54
+ Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
55
+ """
56
+ xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
57
+ xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
58
+ freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
59
+ xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
60
+ xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
61
+ return xq_out.type_as(xq), xk_out.type_as(xk)