Lolalb commited on
Commit
9e880d3
·
verified ·
1 Parent(s): f9eb7ee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -172
README.md CHANGED
@@ -1,199 +1,96 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
43
 
44
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
 
 
 
 
 
 
 
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: mit
3
+ datasets:
4
+ - tiiuae/falcon-refinedweb
5
+ language:
6
+ - en
7
  ---
8
 
9
+ # NeoBERT
10
 
11
+ [![Hugging Face Model Card](https://img.shields.io/badge/Hugging%20Face-Model%20Card-blue)](https://huggingface.co/chandar-lab/NeoBERT)
12
 
13
+ NeoBERT is a **next-generation encoder** model for English text representation, pre-trained from scratch on the RefinedWeb dataset. NeoBERT integrates state-of-the-art advancements in architecture, modern data, and optimized pre-training methodologies. It is designed for seamless adoption: it serves as a plug-and-play replacement for existing base models, relies on an **optimal depth-to-width ratio**, and leverages an extended context length of **4,096 tokens**. Despite its compact 250M parameter footprint, it is the most efficient model of its kind and achieves **state-of-the-art results** on the massive MTEB benchmark, outperforming BERT large, RoBERTa large, NomicBERT, and ModernBERT under identical fine-tuning conditions.
14
 
15
+ - Paper: [paper](https://arxiv.org/abs/2502.19587)
16
+ - Repository: [github](https://github.com/chandar-lab/NeoBERT).
17
 
 
18
 
19
+ ## Get started
20
 
21
+ Ensure you have the following dependencies installed:
22
 
23
+ ```bash
24
+ pip install transformers torch xformers==0.0.28.post3
25
+ ```
26
 
27
+ If you would like to use sequence packing (un-padding), you will need to also install flash-attention:
 
 
 
 
 
 
28
 
29
+ ```bash
30
+ pip install transformers torch xformers==0.0.28.post3 flash_attn
31
+ ```
32
 
33
+ ## How to use
34
 
35
+ Load the model using Hugging Face Transformers:
 
 
36
 
37
+ ```python
38
+ from transformers import AutoModel, AutoTokenizer
39
 
40
+ model_name = "chandar-lab/NeoBERT"
41
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
42
+ model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
43
 
44
+ # Tokenize input text
45
+ text = "NeoBERT is the most efficient model of its kind!"
46
+ inputs = tokenizer(text, return_tensors="pt")
47
 
48
+ # Generate embeddings
49
+ outputs = model(**inputs)
50
+ embedding = outputs.last_hidden_state[:, 0, :]
51
+ print(embedding.shape)
52
+ ```
53
 
54
+ ## Features
55
+ | **Feature** | **NeoBERT** |
56
+ |---------------------------|-----------------------------|
57
+ | `Depth-to-width` | 28 × 768 |
58
+ | `Parameter count` | 250M |
59
+ | `Activation` | SwiGLU |
60
+ | `Positional embeddings` | RoPE |
61
+ | `Normalization` | Pre-RMSNorm |
62
+ | `Data Source` | RefinedWeb |
63
+ | `Data Size` | 2.8 TB |
64
+ | `Tokenizer` | google/bert |
65
+ | `Context length` | 4,096 |
66
+ | `MLM Masking Rate` | 20% |
67
+ | `Optimizer` | AdamW |
68
+ | `Scheduler` | CosineDecay |
69
+ | `Training Tokens` | 2.1 T |
70
+ | `Efficiency` | FlashAttention |
71
 
72
+ ## License
73
 
74
+ Model weights and code repository are licensed under the permissive MIT license.
75
 
76
+ ## Citation
77
 
78
+ If you use this model in your research, please cite:
79
 
80
+ ```bibtex
81
+ @misc{breton2025neobertnextgenerationbert,
82
+ title={NeoBERT: A Next-Generation BERT},
83
+ author={Lola Le Breton and Quentin Fournier and Mariam El Mezouar and Sarath Chandar},
84
+ year={2025},
85
+ eprint={2502.19587},
86
+ archivePrefix={arXiv},
87
+ primaryClass={cs.CL},
88
+ url={https://arxiv.org/abs/2502.19587},
89
+ }
90
+ ```
91
 
92
+ ## Contact
93
 
94
+ For questions, do not hesitate to reach out and open an issue on here or on our **[GitHub](https://github.com/chandar-lab/NeoBERT)**.
95
 
96
+ ---