Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,96 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
|
|
11 |
|
12 |
-
## Model Details
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- tiiuae/falcon-refinedweb
|
5 |
+
language:
|
6 |
+
- en
|
7 |
---
|
8 |
|
9 |
+
# NeoBERT
|
10 |
|
11 |
+
[](https://huggingface.co/chandar-lab/NeoBERT)
|
12 |
|
13 |
+
NeoBERT is a **next-generation encoder** model for English text representation, pre-trained from scratch on the RefinedWeb dataset. NeoBERT integrates state-of-the-art advancements in architecture, modern data, and optimized pre-training methodologies. It is designed for seamless adoption: it serves as a plug-and-play replacement for existing base models, relies on an **optimal depth-to-width ratio**, and leverages an extended context length of **4,096 tokens**. Despite its compact 250M parameter footprint, it is the most efficient model of its kind and achieves **state-of-the-art results** on the massive MTEB benchmark, outperforming BERT large, RoBERTa large, NomicBERT, and ModernBERT under identical fine-tuning conditions.
|
14 |
|
15 |
+
- Paper: [paper](https://arxiv.org/abs/2502.19587)
|
16 |
+
- Repository: [github](https://github.com/chandar-lab/NeoBERT).
|
17 |
|
|
|
18 |
|
19 |
+
## Get started
|
20 |
|
21 |
+
Ensure you have the following dependencies installed:
|
22 |
|
23 |
+
```bash
|
24 |
+
pip install transformers torch xformers==0.0.28.post3
|
25 |
+
```
|
26 |
|
27 |
+
If you would like to use sequence packing (un-padding), you will need to also install flash-attention:
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
```bash
|
30 |
+
pip install transformers torch xformers==0.0.28.post3 flash_attn
|
31 |
+
```
|
32 |
|
33 |
+
## How to use
|
34 |
|
35 |
+
Load the model using Hugging Face Transformers:
|
|
|
|
|
36 |
|
37 |
+
```python
|
38 |
+
from transformers import AutoModel, AutoTokenizer
|
39 |
|
40 |
+
model_name = "chandar-lab/NeoBERT"
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
42 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
43 |
|
44 |
+
# Tokenize input text
|
45 |
+
text = "NeoBERT is the most efficient model of its kind!"
|
46 |
+
inputs = tokenizer(text, return_tensors="pt")
|
47 |
|
48 |
+
# Generate embeddings
|
49 |
+
outputs = model(**inputs)
|
50 |
+
embedding = outputs.last_hidden_state[:, 0, :]
|
51 |
+
print(embedding.shape)
|
52 |
+
```
|
53 |
|
54 |
+
## Features
|
55 |
+
| **Feature** | **NeoBERT** |
|
56 |
+
|---------------------------|-----------------------------|
|
57 |
+
| `Depth-to-width` | 28 × 768 |
|
58 |
+
| `Parameter count` | 250M |
|
59 |
+
| `Activation` | SwiGLU |
|
60 |
+
| `Positional embeddings` | RoPE |
|
61 |
+
| `Normalization` | Pre-RMSNorm |
|
62 |
+
| `Data Source` | RefinedWeb |
|
63 |
+
| `Data Size` | 2.8 TB |
|
64 |
+
| `Tokenizer` | google/bert |
|
65 |
+
| `Context length` | 4,096 |
|
66 |
+
| `MLM Masking Rate` | 20% |
|
67 |
+
| `Optimizer` | AdamW |
|
68 |
+
| `Scheduler` | CosineDecay |
|
69 |
+
| `Training Tokens` | 2.1 T |
|
70 |
+
| `Efficiency` | FlashAttention |
|
71 |
|
72 |
+
## License
|
73 |
|
74 |
+
Model weights and code repository are licensed under the permissive MIT license.
|
75 |
|
76 |
+
## Citation
|
77 |
|
78 |
+
If you use this model in your research, please cite:
|
79 |
|
80 |
+
```bibtex
|
81 |
+
@misc{breton2025neobertnextgenerationbert,
|
82 |
+
title={NeoBERT: A Next-Generation BERT},
|
83 |
+
author={Lola Le Breton and Quentin Fournier and Mariam El Mezouar and Sarath Chandar},
|
84 |
+
year={2025},
|
85 |
+
eprint={2502.19587},
|
86 |
+
archivePrefix={arXiv},
|
87 |
+
primaryClass={cs.CL},
|
88 |
+
url={https://arxiv.org/abs/2502.19587},
|
89 |
+
}
|
90 |
+
```
|
91 |
|
92 |
+
## Contact
|
93 |
|
94 |
+
For questions, do not hesitate to reach out and open an issue on here or on our **[GitHub](https://github.com/chandar-lab/NeoBERT)**.
|
95 |
|
96 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|