chandrujobs's picture
added first version
1bcbd24 verified
import requests
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from datetime import datetime
# GPT-2 setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
# NewsAPI Setup (Replace with your own API key)
news_api_key = "35cbd14c45184a109fc2bbb5fff7fb1b" # Replace with your NewsAPI key
def fetch_trending_topics(search_term="artificial intelligence OR machine learning", page=1, page_size=9):
try:
# Fetch AI and Machine Learning related news from NewsAPI with search term
url = f"https://newsapi.org/v2/everything?q={search_term}&sortBy=publishedAt&pageSize={page_size + 5}&page={page}&language=en&apiKey={news_api_key}" # Fetch extra to avoid duplicates
response = requests.get(url)
data = response.json()
# Check for valid response
if response.status_code == 200 and "articles" in data:
# Collect articles without duplicates
trending_topics = []
seen_titles = set()
for article in data["articles"]:
title = article["title"]
if title not in seen_titles: # Avoid duplicate titles
seen_titles.add(title)
trending_topics.append({
"title": title,
"description": article["description"] if article["description"] else "No description available.",
"url": article["url"],
"publishedAt": article["publishedAt"],
})
if not trending_topics:
return [{"title": "No news available", "description": "", "url": "", "publishedAt": ""}]
return trending_topics
else:
print(f"Error: {data.get('message', 'No articles found')}")
return [{"title": "No news available", "description": "", "url": "", "publishedAt": ""}]
except Exception as e:
print(f"Error fetching news: {e}")
return [{"title": "Error fetching news", "description": "", "url": "", "publishedAt": ""}]
# Analyze the trending topic using GPT-2
def generate_analysis(trending_topic):
input_text = f"Provide a concise analysis about the following topic: '{trending_topic['title']}'. Please summarize its significance in the AI and Machine Learning field."
# Tokenize and generate text with a max limit on tokens
inputs = tokenizer(input_text, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_length=80, num_return_sequences=1, do_sample=True, top_k=50, top_p=0.95)
analysis = tokenizer.decode(outputs[0], skip_special_tokens=True)
return analysis
# Combine both functions for Gradio
def analyze_trends(page=1, page_size=9):
search_term = "artificial intelligence OR machine learning" # Fixed search term
trending_topics = fetch_trending_topics(search_term=search_term, page=page, page_size=page_size)
topic_analysis = []
for topic in trending_topics:
if topic["title"] not in ["Error fetching news", "No news available"]:
analysis = generate_analysis(topic)
topic_analysis.append({
"title": topic["title"],
"description": topic["description"],
"analysis": analysis,
"url": topic["url"],
"publishedAt": topic["publishedAt"],
})
else:
topic_analysis.append({
"title": topic["title"],
"description": topic["description"],
"analysis": "Unable to retrieve or analyze data.",
"url": topic["url"],
"publishedAt": topic["publishedAt"],
})
# Limit the results to the specified page size
return topic_analysis[:page_size] # Ensure only the specified number of articles are returned
# Gradio UI with 3 Columns Layout for Displaying News
def display_news_cards(page=1, page_size=9):
analysis_results = analyze_trends(page=page, page_size=page_size)
current_date = datetime.now().strftime("%d-%m-%Y") # Format: DD-MM-YYYY
display = f"### **AI & Machine Learning News for {current_date}**\n\n"
# Create a 3-column layout
display += "<div style='display:flex; flex-wrap:wrap; justify-content:space-between;'>"
for news_item in analysis_results:
# Each news box in a flex box with equal width
display += f"""
<div style='flex: 1 1 30%; border:1px solid black; margin:10px; padding:10px; box-sizing:border-box;'>
<b>{news_item['title']}</b><br/>
<i>{news_item['publishedAt']}</i><br/><br/>
{news_item['description']}<br/><br/>
<a href='{news_item['url']}' target='_blank'>Read more</a><br/><br/>
<b>Analysis:</b> {news_item['analysis']}<br/><br/>
</div>
"""
display += "</div>"
return display
# Gradio UI with Header, Search Option, and Submit Button
def gradio_interface():
with gr.Blocks() as demo:
# Header with background colour
gr.Markdown("""<h1 style='text-align:center; color:white; background-color:#007BFF; padding:20px; border-radius:10px;'>AI & Machine Learning News Analyzer</h1>""", elem_id="header")
# Fixed search term displayed to the user
gr.Markdown("<p style='text-align:center;'>Search term: <b>artificial intelligence OR machine learning</b></p>")
# Sliders for page number and news per page
page = gr.Slider(minimum=1, maximum=5, step=1, label="Page Number", value=1)
page_size = gr.Slider(minimum=6, maximum=15, step=3, label="News per Page", value=9)
# Button to fetch and analyze news
analyze_button = gr.Button("Submit")
# Output area for displaying the news
news_output = gr.HTML()
# Link the button click to the display function
analyze_button.click(display_news_cards, inputs=[page, page_size], outputs=news_output)
return demo
# Launch the Gradio UI
if __name__ == "__main__":
gradio_interface().launch()