resnet50-tfx-pipeline-hf-model-test5-model
/
pipeline
/components
/pusher
/HFModelPusher
/component.py
from typing import Any, Dict, Optional | |
from tfx import types | |
from tfx.components.pusher import component as pusher_component | |
from tfx.dsl.components.base import executor_spec | |
from pipeline.components.pusher.HFModelPusher import executor | |
class Pusher(pusher_component.Pusher): | |
"""Component for pushing model to Cloud AI Platform serving.""" | |
EXECUTOR_SPEC = executor_spec.ExecutorClassSpec(executor.Executor) | |
def __init__( | |
self, | |
model: Optional[types.Channel] = None, | |
model_blessing: Optional[types.Channel] = None, | |
infra_blessing: Optional[types.Channel] = None, | |
custom_config: Optional[Dict[str, Any]] = None, | |
): | |
"""Construct a Pusher component. | |
Args: | |
model: An optional Channel of type `standard_artifacts.Model`, usually | |
produced by a Trainer component, representing the model used for | |
training. | |
model_blessing: An optional Channel of type | |
`standard_artifacts.ModelBlessing`, usually produced from an Evaluator | |
component, containing the blessing model. | |
infra_blessing: An optional Channel of type | |
`standard_artifacts.InfraBlessing`, usually produced from an | |
InfraValidator component, containing the validation result. | |
custom_config: A dict which contains the deployment job parameters to be | |
passed to Cloud platforms. | |
""" | |
super().__init__( | |
model=model, | |
model_blessing=model_blessing, | |
infra_blessing=infra_blessing, | |
custom_config=custom_config, | |
) | |