File size: 1,166 Bytes
6fb033c
 
 
a6b9321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
---
license: cc-by-nc-sa-4.0
---

# Enhancing Diffusion Models with Text-Encoder Reinforcement Learning

Official PyTorch codes for paper [Enhancing Diffusion Models with Text-Encoder Reinforcement Learning](https://arxiv.org/abs/2311.15657)

## Results on SD-Turbo

We applied our method to the recent model [sdturbo](https://huggingface.co/stabilityai/sd-turbo). The model is trained with [Q-Instruct](https://github.com/Q-Future/Q-Instruct) feedback through direct back-propagation to save training time. Test with the following codes

```
## Note: sdturbo requires latest diffusers>=0.24.0 with AutoPipelineForText2Image class

from diffusers import AutoPipelineForText2Image
from peft import PeftModel
import torch

pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sd-turbo", torch_dtype=torch.float16, variant="fp16")
pipe = pipe.to("cuda")
PeftModel.from_pretrained(pipe.text_encoder, 'chaofengc/sd-turbo_texforce')

pt = ['a photo of a cat.']
img = pipe(prompt=pt, num_inference_steps=1, guidance_scale=0.0).images[0]
```

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6304798d41387c7f117558f7/aVmOs_C8CSBGfrgCserck.jpeg)