--- license: mit base_model: microsoft/Phi-3-mini-4k-instruct tags: - alignment-handbook - generated_from_trainer datasets: - trl-lib/kto-mix-14k - chaoweihuang/lf-response-phi3-f1_100_0.7-fg0.5 model-index: - name: kto-mix-14k-lf-response-phi3-f1_100_0.7-fg0.5-kto-fg-fgudw4.0 results: [] --- # kto-mix-14k-lf-response-phi3-f1_100_0.7-fg0.5-kto-fg-fgudw4.0 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the trl-lib/kto-mix-14k and the chaoweihuang/lf-response-phi3-f1_100_0.7-fg0.5 datasets. It achieves the following results on the evaluation set: - Loss: 0.4815 - Rewards/chosen: -0.6601 - Logps/chosen: -299.7121 - Rewards/rejected: -2.6435 - Logps/rejected: -364.3744 - Rewards/margins: 1.9834 - Kl: 0.0081 - Fg Kl: nan - Fg Rewards/chosen Sum: 0.0694 - Fg Logps/policy Chosen: -15.2781 - Fg Logps/reference Chosen: -14.9295 - Count/fg Chosen: 16.0137 - Fg Rewards/rejected Sum: -0.3623 - Fg Logps/policy Rejected: -19.6552 - Fg Logps/reference Rejected: -18.7868 - Count/fg Rejected: 4.0824 - Fg Logps/policy Kl: -21.1260 - Fg Logps/reference Kl: -20.2070 - Fg Loss: 0.7365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Logps/chosen | Rewards/rejected | Logps/rejected | Rewards/margins | Kl | Fg Kl | Fg Rewards/chosen Sum | Fg Logps/policy Chosen | Fg Logps/reference Chosen | Count/fg Chosen | Fg Rewards/rejected Sum | Fg Logps/policy Rejected | Fg Logps/reference Rejected | Count/fg Rejected | Fg Logps/policy Kl | Fg Logps/reference Kl | Fg Loss | |:-------------:|:------:|:----:|:---------------:|:--------------:|:------------:|:----------------:|:--------------:|:---------------:|:------:|:-----:|:---------------------:|:----------------------:|:-------------------------:|:---------------:|:-----------------------:|:------------------------:|:---------------------------:|:-----------------:|:------------------:|:---------------------:|:-------:| | 0.4495 | 0.4103 | 400 | 0.4978 | -1.0397 | -303.5076 | -2.7182 | -365.1212 | 1.6785 | 0.0054 | nan | -1.3184 | -16.1070 | -14.9295 | 16.0137 | -0.5732 | -20.2671 | -18.7868 | 4.0824 | -21.1826 | -20.2070 | 0.7449 | | 0.5189 | 0.8206 | 800 | 0.4815 | -0.6601 | -299.7121 | -2.6435 | -364.3744 | 1.9834 | 0.0081 | nan | 0.0694 | -15.2781 | -14.9295 | 16.0137 | -0.3623 | -19.6552 | -18.7868 | 4.0824 | -21.1260 | -20.2070 | 0.7365 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1