chaowenguo commited on
Commit
fbd68d5
1 Parent(s): 0cf803b

Upload 4 files

Browse files
Files changed (4) hide show
  1. README.md +163 -0
  2. control_net_open_pose.py +60 -0
  3. diffusion_pytorch_model.bin +3 -0
  4. sd.png +0 -0
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: openrail
3
+ base_model: runwayml/stable-diffusion-v1-5
4
+ tags:
5
+ - art
6
+ - controlnet
7
+ - stable-diffusion
8
+ - controlnet-v1-1
9
+ - image-to-image
10
+ duplicated_from: ControlNet-1-1-preview/control_v11p_sd15_openpose
11
+ ---
12
+
13
+ # Controlnet - v1.1 - *openpose Version*
14
+
15
+ **Controlnet v1.1** is the successor model of [Controlnet v1.0](https://huggingface.co/lllyasviel/ControlNet)
16
+ and was released in [lllyasviel/ControlNet-v1-1](https://huggingface.co/lllyasviel/ControlNet-v1-1) by [Lvmin Zhang](https://huggingface.co/lllyasviel).
17
+
18
+ This checkpoint is a conversion of [the original checkpoint](https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_openpose.pth) into `diffusers` format.
19
+ It can be used in combination with **Stable Diffusion**, such as [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5).
20
+
21
+
22
+ For more details, please also have a look at the [🧨 Diffusers docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/controlnet).
23
+
24
+
25
+ ControlNet is a neural network structure to control diffusion models by adding extra conditions.
26
+
27
+ ![img](./sd.png)
28
+
29
+ This checkpoint corresponds to the ControlNet conditioned on **openpose images**.
30
+
31
+ ## Model Details
32
+ - **Developed by:** Lvmin Zhang, Maneesh Agrawala
33
+ - **Model type:** Diffusion-based text-to-image generation model
34
+ - **Language(s):** English
35
+ - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based.
36
+ - **Resources for more information:** [GitHub Repository](https://github.com/lllyasviel/ControlNet), [Paper](https://arxiv.org/abs/2302.05543).
37
+ - **Cite as:**
38
+
39
+ @misc{zhang2023adding,
40
+ title={Adding Conditional Control to Text-to-Image Diffusion Models},
41
+ author={Lvmin Zhang and Maneesh Agrawala},
42
+ year={2023},
43
+ eprint={2302.05543},
44
+ archivePrefix={arXiv},
45
+ primaryClass={cs.CV}
46
+ }
47
+
48
+ ## Introduction
49
+
50
+ Controlnet was proposed in [*Adding Conditional Control to Text-to-Image Diffusion Models*](https://arxiv.org/abs/2302.05543) by
51
+ Lvmin Zhang, Maneesh Agrawala.
52
+
53
+ The abstract reads as follows:
54
+
55
+ *We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions.
56
+ The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k).
57
+ Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices.
58
+ Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data.
59
+ We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc.
60
+ This may enrich the methods to control large diffusion models and further facilitate related applications.*
61
+
62
+ ## Example
63
+
64
+ It is recommended to use the checkpoint with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as the checkpoint
65
+ has been trained on it.
66
+ Experimentally, the checkpoint can be used with other diffusion models such as dreamboothed stable diffusion.
67
+
68
+ **Note**: If you want to process an image to create the auxiliary conditioning, external dependencies are required as shown below:
69
+
70
+ 1. Install https://github.com/patrickvonplaten/controlnet_aux
71
+
72
+ ```sh
73
+ $ pip install controlnet_aux==0.3.0
74
+ ```
75
+
76
+ 2. Let's install `diffusers` and related packages:
77
+
78
+ ```
79
+ $ pip install diffusers transformers accelerate
80
+ ```
81
+
82
+ 3. Run code:
83
+
84
+ ```python
85
+ import torch
86
+ import os
87
+ from huggingface_hub import HfApi
88
+ from pathlib import Path
89
+ from diffusers.utils import load_image
90
+ from PIL import Image
91
+ import numpy as np
92
+ from controlnet_aux import OpenposeDetector
93
+
94
+ from diffusers import (
95
+ ControlNetModel,
96
+ StableDiffusionControlNetPipeline,
97
+ UniPCMultistepScheduler,
98
+ )
99
+
100
+ checkpoint = "lllyasviel/control_v11p_sd15_openpose"
101
+
102
+ image = load_image(
103
+ "https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/input.png"
104
+ )
105
+
106
+ prompt = "chef in the kitchen"
107
+
108
+ processor = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
109
+
110
+ control_image = processor(image, hand_and_face=True)
111
+ control_image.save("./images/control.png")
112
+
113
+ controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
114
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
115
+ "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
116
+ )
117
+
118
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
119
+ pipe.enable_model_cpu_offload()
120
+
121
+ generator = torch.manual_seed(0)
122
+ image = pipe(prompt, num_inference_steps=30, generator=generator, image=control_image).images[0]
123
+
124
+ image.save('images/image_out.png')
125
+
126
+ ```
127
+
128
+ ![bird](./images/input.png)
129
+
130
+ ![bird_canny](./images/control.png)
131
+
132
+ ![bird_canny_out](./images/image_out.png)
133
+
134
+ ## Other released checkpoints v1-1
135
+
136
+ The authors released 14 different checkpoints, each trained with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)
137
+ on a different type of conditioning:
138
+
139
+ | Model Name | Control Image Overview| Control Image Example | Generated Image Example |
140
+ |---|---|---|---|
141
+ |[lllyasviel/control_v11p_sd15_canny](https://huggingface.co/lllyasviel/control_v11p_sd15_canny)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"/></a>|
142
+ |[lllyasviel/control_v11e_sd15_ip2p](https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p)<br/> *Trained with pixel to pixel instruction* | No condition .|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"/></a>|
143
+ |[lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint)<br/> Trained with image inpainting | No condition.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"/></a>|
144
+ |[lllyasviel/control_v11p_sd15_mlsd](https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd)<br/> Trained with multi-level line segment detection | An image with annotated line segments.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"/></a>|
145
+ |[lllyasviel/control_v11f1p_sd15_depth](https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth)<br/> Trained with depth estimation | An image with depth information, usually represented as a grayscale image.|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"/></a>|
146
+ |[lllyasviel/control_v11p_sd15_normalbae](https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae)<br/> Trained with surface normal estimation | An image with surface normal information, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"/></a>|
147
+ |[lllyasviel/control_v11p_sd15_seg](https://huggingface.co/lllyasviel/control_v11p_sd15_seg)<br/> Trained with image segmentation | An image with segmented regions, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"/></a>|
148
+ |[lllyasviel/control_v11p_sd15_lineart](https://huggingface.co/lllyasviel/control_v11p_sd15_lineart)<br/> Trained with line art generation | An image with line art, usually black lines on a white background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"/></a>|
149
+ |[lllyasviel/control_v11p_sd15s2_lineart_anime](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> Trained with anime line art generation | An image with anime-style line art.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"/></a>|
150
+ |[lllyasviel/control_v11p_sd15_openpose](https://huggingface.co/lllyasviel/control_v11p_sd15_openpose)<br/> Trained with human pose estimation | An image with human poses, usually represented as a set of keypoints or skeletons.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"/></a>|
151
+ |[lllyasviel/control_v11p_sd15_scribble](https://huggingface.co/lllyasviel/control_v11p_sd15_scribble)<br/> Trained with scribble-based image generation | An image with scribbles, usually random or user-drawn strokes.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"/></a>|
152
+ |[lllyasviel/control_v11p_sd15_softedge](https://huggingface.co/lllyasviel/control_v11p_sd15_softedge)<br/> Trained with soft edge image generation | An image with soft edges, usually to create a more painterly or artistic effect.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"/></a>|
153
+ |[lllyasviel/control_v11e_sd15_shuffle](https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle)<br/> Trained with image shuffling | An image with shuffled patches or regions.|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"/></a>|
154
+
155
+ ## Improvements in Openpose 1.1:
156
+
157
+ - The improvement of this model is mainly based on our improved implementation of OpenPose. We carefully reviewed the difference between the pytorch OpenPose and CMU's c++ openpose. Now the processor should be more accurate, especially for hands. The improvement of processor leads to the improvement of Openpose 1.1.
158
+ - More inputs are supported (hand and face).
159
+ - The training dataset of previous cnet 1.0 has several problems including (1) a small group of greyscale human images are duplicated thousands of times (!!), causing the previous model somewhat likely to generate grayscale human images; (2) some images has low quality, very blurry, or significant JPEG artifacts; (3) a small group of images has wrong paired prompts caused by a mistake in our data processing scripts. The new model fixed all problems of the training dataset and should be more reasonable in many cases.
160
+
161
+ ## More information
162
+
163
+ For more information, please also have a look at the [Diffusers ControlNet Blog Post](https://huggingface.co/blog/controlnet) and have a look at the [official docs](https://github.com/lllyasviel/ControlNet-v1-1-nightly).
control_net_open_pose.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import torch
3
+ import os
4
+ from huggingface_hub import HfApi
5
+ from pathlib import Path
6
+ from diffusers.utils import load_image
7
+ from controlnet_aux import OpenposeDetector
8
+
9
+ from diffusers import (
10
+ ControlNetModel,
11
+ StableDiffusionControlNetPipeline,
12
+ UniPCMultistepScheduler,
13
+ )
14
+ import sys
15
+
16
+ checkpoint = sys.argv[1]
17
+
18
+ <<<<<<< HEAD
19
+ image = load_image("https://github.com/lllyasviel/ControlNet-v1-1-nightly/raw/main/test_imgs/demo.jpg").resize((512, 512))
20
+ prompt = "The pope with sunglasses rapping with a mic"
21
+
22
+
23
+ openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
24
+ image = openpose(image, hand_and_face=True)
25
+ =======
26
+ image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-openpose/resolve/main/images/pose.png")
27
+ prompt = "chef in the kitchen"
28
+
29
+
30
+ openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
31
+ image = openpose(image)
32
+ >>>>>>> 6e2c3bc1a649ac194d79bb2f4ee11900d7f0e8f6
33
+
34
+ controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
35
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
36
+ "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
37
+ )
38
+
39
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
40
+ pipe.enable_model_cpu_offload()
41
+
42
+ generator = torch.manual_seed(33)
43
+ <<<<<<< HEAD
44
+ out_image = pipe(prompt, num_inference_steps=35, generator=generator, image=image).images[0]
45
+ =======
46
+ out_image = pipe(prompt, num_inference_steps=20, generator=generator, image=image).images[0]
47
+ >>>>>>> 6e2c3bc1a649ac194d79bb2f4ee11900d7f0e8f6
48
+
49
+ path = os.path.join(Path.home(), "images", "aa.png")
50
+ out_image.save(path)
51
+
52
+ api = HfApi()
53
+
54
+ api.upload_file(
55
+ path_or_fileobj=path,
56
+ path_in_repo=path.split("/")[-1],
57
+ repo_id="patrickvonplaten/images",
58
+ repo_type="dataset",
59
+ )
60
+ print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")
diffusion_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40c80b93aea10c31de2d282adbe8bbb945611a037ca36e0cd55d3ee7d59fedce
3
+ size 1445254969
sd.png ADDED